ZN, JOURNAL OF
@ CYBERSECURITY

Journal of Cybersecurity, 2025, tyaf005
https://doi.org/10.1093/cybsec/tyaf005

Research Paper

Software security in practice: knowledge and

motivation

Hala Assal ®'*, Srivathsan G. Morkonda
Sonia Chiasson?

2 Muhammad Zaid Arif?,

'Department of Systems and Computer Engineering, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
2School of Computer Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada

*Corresponding author. Department of Systems and Computer Engineering, Carleton University, 1125 Colonel By Drive,

Ottawa, ON, K1S 5B6, Canada. E-mail: Hala.Assal@carleton.ca

Received 7 October 2024; revised 12 December 2024; accepted 14 February 2025

Abstract

Developing secure software remains a challenge for developers despite the availability of security resources and
secure development tools. Common factors affecting software security include the developer’s security awareness
and the rationales behind their development decisions with respect to security. In this work, we conducted inter-
views with software developers to examine how developers in organizations acquire security knowledge, and what
factors motivate or prevent developers from adopting software security practices. Our analysis reveals that devel-
opers’ security knowledge and motivations are intertwined aspects that are both important for promoting security in
development teams. We identified a variety of learning opportunities used by developers and employers for increas-
ing security awareness, including in-context learning activities preferred by developers. Based on our application of
the self-determination theory, better security outcomes are expected when developers are internally driven toward
security, rather than motivated by external factors; this aligns with our interpretation of participants’ descriptions
relating to security outcomes within their teams. Based on our analysis, we provide ideas on how to motivate devel-

opers to internalize security and improve their security practices.

Keywords: usable security; software security; software developers; interview; security knowledge; security motivation

Introduction

Software developers are not necessarily security experts, yet they are
widely held responsible for developing secure applications. Many se-
curity initiatives and tools have been proposed to support the in-
tegration of security in the Software Development Lifecycle (SDLC)
(e.g.[1=7]). Despite these efforts, vulnerabilities persist [8,9] and with
the proliferation of software in all aspects of our lives, security vul-
nerabilities can have a devastating impact on users’ livelihood (e.g.
vulnerabilities in cars [10,11], in medical wearable devices [12], or
in home appliances [13]). Formally, a software vulnerability can be
defined as “a weakness in an information system, system security pro-
cedure, internal control, or implementation that could be exploited
by a threat source.” [14]. Vulnerabilities could be unintentional or
could be introduced to a system by a malicious developer; the latter
is out of the scope of this paper.

Many reasons have been suggested for the prevalence of vulner-
abilities. For example, a common problem for security is the the un-

motivated user property [15], where security is generally not a pri-
mary goal for users; this concept also applies to software developers
since security is rarely their primary objective [16-19]. While secure
coding guidelines could be useful, developers are generally unaware
of such guidelines [5], or are not mandated by their companies to
use them [20-22]. Besides, developers might lack security knowledge
necessary to prevent vulnerabilities [23-25]. And even when they do
possess some security knowledge, developers may lack the ability [26]
or expertise [25,27] to apply this knowledge to identify and address
vulnerabilities in their applications. In this context, security knowl-
edge refers to information that increases developers’ software secu-
rity awareness, and helps them avoid, identify, or fix security issues.
Previous usable security research has focused on developers and the
human factors of software security [16—19]. For example, Acar et al.
[16] developed a research agenda that focuses on proposing and im-
proving security tools and methodologies, as well as understanding
how developers view and deal with software security.

© The Author(s) 2025. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons 1
Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any
medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

G20Z UDIBIN BZ UO [eSSY BleH Aq L2/ | 208/S005eAY L/| L/aIoie/A1un9as19GA9/woo°dno-olwapeoe//:sdny wouj papeojumoq

https://doi.org/10.1093/cybsec/tyaf005
https://orcid.org/0000-0002-3306-0558
http://orcid.org/0009-0005-2218-1935
mailto:Hala.Assal@carleton.ca
https://creativecommons.org/licenses/by-nc/4.0/
mailto:journals.permissions@oup.com

2 Assal et al.
Development Security testing
Activity System Activity System
/ \ functionality security VAN
/ \ S / / ’«.\
/ N // N
Y, / \‘~, / 4 \
et/ | \ Object / \
/’ \ . 7 4 .‘\\
// \\) /‘/ \\
/ of \ \‘\. // \\
/ \\.\ software /,/ \\,
4 v - £ ! = R

Figure 1. Third generation activity theory with two interacting activity systems [35].

We conducted an interview study with professional software de-
velopers. In an accompanying paper [28], we analyzed a portion of
this data to explore real-life software security practices and identified
factors that may influence these practices. In this current paper, we
address different research questions and analyze the full dataset using
the Grounded Theory methodology. Herein, we focus on how devel-
opers learn about security, and factors that motivate (or deter) devel-
opers from addressing software security. We presented early discus-
sion about the motivations and amotivations related to software se-
curity at the 2018 SOUPS Workshop on Security Information Work-
ers [29]). In this paper, we pursue the following research questions:

RQ1: How do developers acquire knowledge relating to software
security?

RQ2: What are developers’ motivations towards adopting soft-
ware security practices?

Initially, we set out to explore developers” knowledge of software
security and how they acquire this knowledge (RQ1). However, dur-
ing preliminary data analysis, we found that even those with the nec-
essary security knowledge may lack motivation to adopt software se-
curity practices. This led us to explore the second research question
(RO2).

Through this work, we identify opportunities and strategies for
acquiring security knowledge (Section “Knowledge acquisition tax-
onomy”), and explore factors influencing developers’ motivation to-
ward adopting security practices (Section “Motivation for software
security”). Our data analysis also revealed that security knowledge
and motivation are two intertwined aspects that may influence se-
curity practices; motivation in itself is not enough if the developer
lacks security knowledge and, as it turns out, security knowledge it-
self affects motivation. In addition, we found several factors that may
induce developers’ amotivation (i.e. lack of drive to engage) toward
security, despite their security knowledge and belief of its importance.
Thus, besides offering technical support for developers with security
tools and libraries, our data shows the importance of having devel-
opers internalize software security practices and act with volition to-
ward it (Section “Internalizing software security”).

Related work and background

Developers may recognise the need for integrating security within
the SDLC [30], yet they may be unable to follow security practices
due to insufficient security knowledge or due to workplace factors
such as a lack of security culture [28,31]. In this paper, we focus on

how software developers gain security knowledge, as well as their
motivations toward adopting software security practices.

We begin this section by providing a brief background on two
theories that we use to explain the results (in sections “Knowledge
acquisition taxonomy” and “Motivation for software security”), fol-
lowed by a review of existing literature on factors affecting secure
software development practices.

Theoretical background on activity theory

In the section “Multiple activity systems interacting within project
teams,” we use Activity Theory [32,33] to describe the interactions
between the different teams working on developing a software prod-
uct, their often conflicting objectives and perspectives, and how these
multiple perspectives can enhance/impede the security of their soft-
ware. Here, we provide a brief primer on Activity Theory.

Activity theory [32,33] can be defined as “a philosophical and
cross-disciplinary framework for studying different forms of hu-
man practices as development processes, with both individual and
social levels interlinked at the same time” [34]. Engestrom pro-
posed the “activity system model” [33,34] that describes a three-way
relationship between a subject (e.g. a developer), their object (e.g. de-
veloping software) and their community (e.g. a development team).

The “third generation of activity theory” expands the original
theory by considering two activity systems as the minimal unit of
analysis [35]. It aims to understand discussions, perspectives, and in-
teractions between multiple activity systems. Of particular relevance
to this paper is the principle of multi-voicedness [35]. Rather than a
homogeneous system, activity theory views an activity system as con-
sisting of multiple perspectives, traditions, and interests [35,36]. This
multi-voicedness is magnified when multiple activity systems interact
as it brings multiple viewpoints closer.

As will be discussed in the section “Multiple activity systems in-
teracting within project teams,” in software development organiza-
tions, the development activity can be considered as one activity sys-
tem while the security testing activity is a second independent activ-
ity system (Fig. 1). Each activity system involves different objectives,
priorities (e.g. functionality for developers, and security for security
testers), and perspectives.

Theoretical background on Self-Determination Theory
In the section “Motivation for software security,” we use the Self-
Determination Theory (SDT) to explain what motivates developers

G20Z UDIBIN BZ UO [eSSY BleH Aq L2/ | 208/S005eAY L/| L/aIoie/A1un9as19GA9/woo°dno-olwapeoe//:sdny wouj papeojumoq

Software security in practice

and their teams to address software security, as well as explain rea-
sons for lacking software security motivation.

SDT [37,38] is a cognitive framework for studying human moti-
vation in learning environments such as classrooms and organiza-
tions. SDT identified distinct types of motivation, each with clear
consequences on an individual’s potential to thrive [39] in relation
to learning, performance, personal experience, or well-being [38].
Behaviors are “autonomously” motivated when they are fully self-
determined, whereas “controlled” behaviors are those driven by ex-
ternal or internal pressures or an obligation to act [38,39]; in our con-
text, a developer who performs security activities out of self-interest
characterizes fully autonomous behavior, whereas a developer who
performs security activities only to comply with regulations repre-
sents controlled behavior. SDT uses the autonomy-control continuum
to differentiate types of motivation with respect to their regulation
[39], as described next (and later depicted in the section “Motivation
for software security,” Fig. 4).

Amotivation (at the far left of this continuum) is the lack of moti-
vation to act, where the person does not act at all or acts without in-
tent [38]. Amotivation has three forms. The first form is when people
feel they cannot effectively achieve the desired outcome, e.g. because
they are not competent to do it [38-40], such as when they lack se-
curity knowledge. The second form of amotivation occurs when the
action lacks interest, relevance, or value to the person [38-40], such
as when they do not perceive security to be their responsibility. Fi-
nally, the third form is when amotivation to a behavior is actually a
defiance and motivation to oppose said behavior [39]. For example, a
developer refuses to use a security tool because it requires modifying
their existing workflows.

To the right of amotivation, the continuum presents the different
types of motivations based on the actor’s degree of autonomy when
carrying out the activity; we describe these motivations in the con-
text of software security practices. External regulation is the least
autonomous and most external to the developer (e.g. motivated only
by fear of losing business opportunities), whereas introjected regu-
lation refers to motivations that result from self-pressure and ego.
More autonomously, identified regulation occurs when the developer
deems security as personally important. Integrated regulation is when
the developer fully accepts the goal of the activity and acts toward
it with volition (e.g. to protect users’ privacy and security). On the
rightmost end of the spectrum, the most autonomous is intrinsic mo-
tivation, where security activities are performed purely for the plea-
sure and satisfaction that result from the challenge they present to
the developer. SDT suggests that more autonomous motivation styles
are associated with positive outcomes, such as increased engagement,
improved performance, encouraging creativity, more cognitive flexi-
bility, and better learning [38,40].

Secure software development practices

Security within the SDLC

Security best practices recommend integrating security throughout
the SDLC and starting from the early stages [28,41,42]. Assal and
Chiasson [28] discuss practical strategies for integrating security in
each stage of the SDLC, e.g. by identifying security requirements and
performing threat modeling in the design stage, and integrating se-
curity in the post-development testing stage. The authors also point
out the importance of considering security of third-party libraries
and monitoring for vulnerabilities [28]. When security is a prior-
ity, it should influence decisions throughout the SDLC. For exam-
ple, developers could consider more secure programming languages
such as Rust that prevent certain classes of vulnerabilities [43]. How-

ever, previous work suggests that security tends to be considered only
in certain development stages rather than integrated throughout the
SDLC. Assal and Chiasson [28] found that development teams often
prioritize security only in the latter stages of the SDLC such as dur-
ing code reviews and post-development testing. They also found that
deviation from security best practices (e.g. the principle of security-
by-design) are influenced by workplace factors such as the organi-
zation’s development hierarchy, and developers’ security knowledge.
Braz and Bacchelli [31] examined code review practices in specific
organizations, and found that security considerations were largely
absent during code reviews. They suggested that developers might be
lacking motivation to consider security during code reviews because
developers had insufficient security knowledge or because of insuf-
ficient employer-driven security training. Many studies about secure
software development (e.g. [44-46]) have found that developers need
to be explicitly reminded to consider security. For example, Braz et al.
[44] suggested that simply prompting code reviewers to focus on se-
curity can increase detection of vulnerabilities. Interestingly, develop-
ers may also inadvertently (and possibly unknowingly) follow secure
practices as an unintentional by-product of completing other tasks
[47] but this haphazard approach is clearly unreliable. In summary,
existing research has focused on how security practices are included
in the SDLC; our work extends the literature by exploring what mo-
tivates developers with respect to software security, and identifies ac-
tivities that can help improve developers’ security knowledge.

Factors influencing adoption of secure development solutions

Other research has focused on understanding factors influencing the
adoption of available tools that support secure software develop-
ment. Besides developers’ security expertise and skills [28,48], adop-
tion tends to be impacted by the organization’s overall culture to-
ward security and by the context of the application being developed
[21,22,49-51]. For example, developers (even those with security
knowledge) may lack resources or the autonomy within their orga-
nization to improve their applications’ security and privacy [50,52].
Relatedly, Danilova et al. [53] found that when security tools (e.g.
static analysis tools) are incompatible with developers’ preferences,
workflows, or their roles within the organizations, the developers per-
ceive the security warnings from these tools as unuseful. However,
developers tend to be more receptive when the security warnings in-
clude code examples for vulnerabilities and solutions [54]. Similarly,
Acar et al. [55] suggested that including working code samples and
comprehensive Application Programming Interface (API) documen-
tation would improve the adoption of cryptographic APIs and lead to
more secure code. Fulton et al. [43] found that although developers
perceived positive security benefits from the memory-safe program-
ming language Rust, they were reluctant to adopt it due to its steep
learning curve. These findings suggest that security adoption depends
not only on developers’ security knowledge or their willingness to-
ward security but also on organizational norms and usability of se-
curity tools. Thus, it is important to consider these diverse factors
when encouraging security adoption.

Security knowledge and skills

Sources of security knowledge

Previous research has explored the impact of specific knowledge
sources used by developers for learning about software security in-
cluding online developer forums and code documentation. Having
security knowledge is often a key driver of security-related activi-
ties in development teams [56,57], but the quality of the informa-
tion source can significantly impact whether developers succeed at

G20Z UDIBIN BZ UO [eSSY BleH Aq L2/ | 208/S005eAY L/| L/aIoie/A1un9as19GA9/woo°dno-olwapeoe//:sdny wouj papeojumoq

Assal et al.

producing secure code. Developers tend to depend heavily on the
online Question and Answer developer-focused forum Stack Over-
flow [58] as an easy-to-use programming resource, however, it often
leads to insecure code [59,60]. A comparative study by Acar et al.
[60] on Android application development found that relying on of-
ficial Android documentation and textbooks led developers to pro-
duce more secure code while developers relying on Stack Overflow
produced more functional but less secure code. Sadly, many security-
related posts on Stack Overflow tend to remain unanswered or have
answers that are not “accepted” (i.e. not marked as satisfactory by
the user asking the question) [61], raising doubts about the efficacy
of such forums for software security. Developers also rely on col-
leagues as sources of security knowledge. Through an ethnographic
study, Tuladhar et al. [57] observed that developers acquire security
knowledge when collaborating with other developers on the specific
applications they develop. These studies show that developers rely on
the knowledge resources that are available to them which may be of
varying quality and may not necessarily align with security best prac-
tices. In the section “Knowledge acquisition taxonomy,” we discuss
security knowledge acquisition activities in detail.

Security awareness among developers

Other works have focused on understanding and improving devel-
opers’ security awareness. Gasiba et al. [5] found that developers are
generally not aware of secure coding guidelines, which aim to pro-
mote security knowledge. Votipka et al. [25] found that the lack of
security knowledge was a primary contributor to the introduction
of vulnerabilities regardless of development experience. In addition,
even when developers are aware of security concepts, they may not
know how to apply the concepts correctly in order to achieve the
intended security goals [25]. Lopez et al. [30] suggested a different
view that developers do possess basic security knowledge but they
lack control of development activities that provide opportunities to
extend their security knowledge. They recommended that develop-
ers combine online discussions about security on sites such as Stack
Overflow with social interactions about security in their development
teams to extend security knowledge and promote a security culture
within the organization. There also exist studies that focused on im-
proving developers’ programming knowledge in general (i.e. not spe-
cific to security), for example, using “in-context” code annotations
[62] or using dedicated knowledge-sharing platforms [63]; similar
approaches could potentially also help improve developers’ security
knowledge but this has not yet been explored. Beyond those discussed
above, our work identifies additional security knowledge sources and
development activities that help increase developers’ security knowl-
edge, and proposes an overall taxonomy allowing for comparison.

Developer challenges and motivators

Challenges faced by developers

Building secure software is challenging, especially when develop-
ers without adequate security knowledge are expected to implement
code that might affect the security of the software [17,60]. Mokhberi
and Beznosov [19] reviewed previous studies focused on the chal-
lenges faced by developers in secure software development and sug-
gested that organizational and human factors tend to have a larger
impact than technological factors, e.g. developers favor security tool
adoption when supported by a manager who prioritizes security and
by an organization that provides access to security resources. Tahaei
and Vaniea [18] surveyed existing literature on “developer-centered
security” (a secure software development approach with emphasis
on the needs of developers [64]) and discussed the importance of

workplace context and organizational incentives when considering
developers’ security needs. A common challenge highlighted by both
surveys relates to security often being considered a secondary func-
tion which causes developers to sacrifice security for other functional
requirements [18,19]. Poller et al. [65] found that developers may
be reluctant to change their security practices due to various orga-
nizational factors such as existing development procedures and as-
signed roles. These studies show that barriers to secure development
practices are much more nuanced than simply a lack of usable se-
curity tools and that several important socio-organizational factors
also need to be considered.

Understanding developer motivations

In an early study on security motivations within organizations, Woon
and Kankanhalli [66] found that developers’ intentions to perform
security actions were aligned with the developers having positive atti-
tudes and perceptions of the usefulness of security. More recent work
on identifying developers’ security motivations have focused on in-
dependent app developers. For example, Van der Linden et al. [47]
examined the relationships between mobile app developers’ security
rationale and their security behavior, and observed that app develop-
ers were particularly concerned about security in specific scenarios
such as when collecting personal data of users or when storing pass-
word hashes. Weir et al. [67] found that Android app developers tend
to perform security-enhancing activities when they perceive a need
for security and when they also have access to security experts. Ryan
et al. [51] characterized developers into four security archetypes that
explain developers’ security behaviors. The authors suggested that
developers’ security behavior is primarily influenced by self-interest
and environmental support. Through our interviews and data anal-
ysis herein, we found additional factors that fit into a wide spectrum
of motivators and amotivators described in the section “Motivation
for software security.” While there has been a considerable focus on
the challenges faced by independent developers, there has been little
focus on understanding what motivates or demotivates developers
with respect to security within organizational contexts. Our study
begins to fill this research gap.

Interventions for motivating developers

Other work has proposed interventions to motivate developers to-
ward adopting security practices, including on-the-job training ac-
tivities [5,6,68], cybersecurity games [69,70] and in-context educa-
tion [26,68]. Weir et al. [6] demonstrated that a series of low-cost
facilitated workshops can motivate developers to adopt effective se-
curity practices. Relatedly, Lopez et al. [69] designed guidelines for
engaging with developers about security; they recommended using
scenario-based games and workshops to motivate discussions about
security. Gasiba et al. [5] suggested various training activities within
development teams in order to raise awareness about secure coding
guidelines. They also designed a cybersecurity game [70] targeted to
developers in industrial environments. To support developers in the
correct use of cryptographic APIs, Gorski et al. [71] proposed de-
signing security warnings using concise messages and including code
examples for different use cases. Thomas et al. [68] recommended
tailoring training activities to focus on the specific types of security
issues developers are likely to encounter in their code, and to ad-
dress developers’ weakness in security knowledge. Ford et al. [72]
recommended matching development tasks based on developer per-
sonalities, which may also be useful for security-related tasks. The
variety of interventions considered in these studies suggest that there
is no one-size-fits-all solution. In this paper, we take a more holistic
view by describing a number of activities organizations can adopt

G20Z UDIBIN BZ UO [eSSY BleH Aq L2/ | 208/S005eAY L/| L/aIoie/A1un9as19GA9/woo°dno-olwapeoe//:sdny wouj papeojumoq

Software security in practice

Table 1. Participant demographics.

Participant Company and team
ID Gender Age Years Title SK Company size Team size
P1 F 30 1 Software engineer 4 Large enterprise 20
P2 M 34 15 Software engineer N Large enterprise 12
P3 M 33 10 Software engineer 4 Large enterprise 10
P4 M 38 21 Software developer 4 SME 7
PS M 34 12 Product manager N Large enterprise 7
P6 F 26 3 Software engineering analyst 3 Large enterprise 12
P7 M 33 4 Senior web engineer 4 SME 3
P8 M 34 N Software developer 3 Large enterprise 20
P9 M 33 8 Software engineer 2 SME 5
P10 M 37 20 Principal software engineer N SME 10
P11 M 38 15 Senior software developer 2 SME 8
P12 M 26 3 Software developer 2 SME 4
P13 F 27 5 Junior software developer 4 Large enterprise 7

Years: years of experience in development.

SK: self-rating of security knowledge 1 (no knowledge) to 5 (expert). SME: Small-medium enterprise.

based on their needs and constraints to promote security-enhancing
activities.

Study design and methodology

In this section, we present the study design, data analysis methodol-
ogy, participant demographics, and study limitations.

Interview study design

We designed and conducted an IRB-approved semi-structured inter-
view study with professional software developers. The interview ad-
dressed five main topics: general development activities, attitude to-
ward security, security knowledge, security processes, and software
testing activities (see Appendix A for the interview script). We re-
cruited participants through posts on software development forums
and relevant social media groups, as well as through announcements
among professional contacts. Participants received a $20 Amazon
gift card as compensation. Participants completed a demographics
questionnaire before their one-on-one interviews. Interviews were
conducted in-person (7 = 3) or remotely, e.g. through phone calls or
videoconferencing (7 = 10), lasted approximately one hour, and were
audio recorded and later transcribed for analysis. A total of 3 waves
of data collection took place, each followed by preliminary analysis
and preliminary conclusions [73]. We concluded recruitment upon
saturation (i.e. when new data did not provide more insights) as per
Glaser and Strauss’s [73] recommendation. In total, we recruited 13
professional software developers for our study.

Participant demographics

Our 13 participants answered our interview questions in the con-
text of 15 companies; two participants reflected on their current and
previous companies. We did not have multiple participants from the
same company. Participants self-identified their roles and the prod-
ucts with which they are involved. We then classified their responses
using Forward and Lethbridge’s [74] software taxonomy. Partici-
pants in our dataset worked on various types of applications: web
applications and services like e-finance, online productivity, online
booking, website content management, and social networking, as
well as software like embedded software, kernels, design and engi-
neering software, support utilities, and information management and

support systems. The organizations mentioned in the dataset were all
based in North America. All participants included in the study hold
university degrees, have had courses in software programming, and
are employed as developers with an average of 9.35 years experience
(Md = 8). The recruitment did not prioritize any specific software
development methodology. Participants reported following a Water-
fall model or variations of the Agile methodology. See Table 1 for
participant demographics.

Data analysis approach

We used Strauss and Corbin’s Grounded Theory methodology [75]
to analyze our interviews. Our analysis took into consideration the
different stages of the SDLC, and how security was (or was not) in-
cluded in each stage. For example, during our analysis of participants’
code review processes, we paid particular attention to whether/how
security was addressed during these reviews. This included, analyzing
whether security was prioritized during the reviews or if it was ad-
dressed in an ad-hoc manner, the reviewers’ security expertise, how
security considerations were raised and addressed, and how recep-
tive different team members were to discussing and addressing .0s.
We performed open-coding through examining the answer to each
question in the interview script and assigning codes describing the
main themes or ideas discussed. The main researcher performed the
open-coding, however, codes were discussed with a second researcher
whenever a new code was created. Open coding was done using At-
las.ti (https:/atlasti.com/interview-analysis-tools) on 600 unique ex-
cerpts and resulted in a total of 170 open codes. We italicize and use
a different font for our codes when reporting.

For example, “Learning from peers” is an open code that
we created when participants indicated that they acquire security
knowledge through interaction with their colleagues. In the follow-
ing quote, P8 explains how all his security knowledge came from
colleagues in the company where he works. He said, “I guess up un-
til now, any knowledge I have got of [software security] has just been
purely from peers, or anytime we bring in a new employee and they
have more knowledge about it. That’s where I kinda learn it from.”

Following open coding, we performed axial coding by look-
ing for patterns, relationships, and connections between the open
codes. We wrote each of the codes on a Post-It note, grouped sim-
ilar ones, and looked for relationships, such as categorical or causal-
ity relationships. Even though this process was possible using At-
las.ti, we preferred using Post-It notes to allow us to be more im-

G20Z UDIBIN BZ UO [eSSY BleH Aq L2/ | 208/S005eAY L/| L/aIoie/A1un9as19GA9/woo°dno-olwapeoe//:sdny wouj papeojumoq

https://atlasti.com/interview-analysis-tools

Assal et al.

Figure 2. Axial coding process. Left: first round of axial coding, right: looking for relationships and connections.

mersed in the data, have an overview of the codes and categories,
and have the ability to move them around as needed, as shown in
Fig. 2.

The last step in coding was selective coding, where we worked
toward integrating and refining the categories, and identifying a core
category that represents the overall theme of the research [75]. To
achieve this, we examined the categories, while referring back to the
interview scripts (raw data), abstracting the main issue and asking
ourselves: “what comes through although it might not be said di-
rectly?” [75].

Through being immersed in the data and as the analysis contin-
ued, a core category relating to the concept of internalizing and ac-
cepting security activities and behaviors began to emerge. We will
discuss this further in the section “Internalizing software security.”

Knowledge acquisition taxonomy

Through our analysis of the interview data, we identified different op-
portunities for acquiring and sharing security knowledge. We found
that these opportunities can be grouped based on distinct character-
istics (discussed below), which we organize into a taxonomy. In Ta-
ble 2, we present the knowledge acquisition taxonomy: a taxonomy
of the activities described by our participants that we have identified
as opportunities for knowledge acquisition. We represent the type
of learning associated with the activity horizontally across the table,
and the initiator of the activity (i.e. the initiator of the learning op-
portunity) vertically.

Types of learning

We classified the learning opportunities identified in our data ac-
cording to their level of formality. “Formal” learning is always or-
ganized and structured, has learning objectives, and is always inten-
tional from the learner’s perspective [76-79]. Conversely, “informal”

learning is neither organized nor structured, does not have specific
objectives, and happens as a by-product of other activities [76,77,79].
“Semi-formal” learning opportunities identified in our data fall
between these two, where learning lacks one or more aspects of for-
mal learning while being more organized and structured than infor-
mal learning [76,77,79].

Activity initiator

This is the entity with the motivation to start the activity, thus the
security learning opportunity. This can be the employer (e.g. when
the employer organizes mandatory activities that the developer at-
tends for compliance), or the developers (i.e. in activities that the de-
veloper is self-motivated to initiate without direct encouragement or
mandate). Some activities are initiated by both the employer and the
developer, e.g. optional activities the employer sets up in which de-
velopers can choose to participate, even though they would not have
initiated the activity on their own. Thus, activity initiation is along an
employer—developer spectrum, where initiation tends to be more in-
ternal to, and self-motivated by, the developer as we move toward the
developer end of the spectrum. We note that developers disinterested
in security may still perform activities in the taxonomy’s third row
(i.e. developer-initiated activities) as part of completing job-related
tasks; however, our analysis shows that they are likely to procrasti-
nate with respect to these activities. We discuss developer motivations
in more detail in the section “Motivation for software security.”

Features
We have identified five different features for each learning opportu-
nity/activity.

® Relative cost ($, $$). The symbol $ indicates that the activity is
relatively low cost and $$ indicates higher cost. Obviously, the
cost one company finds reasonable may be expensive for another.

GZ0Z Youel\ 62 Uo |essy eleH Aq L.Z/L208/5005eAy/L/L L/elonie/AunoesiagAo/woo dnoolwepeoe//:sdiy woly pspeojumoq

Software security in practice

Table 2. Knowledge acquisition taxonomy. The taxonomy presents security knowledge acquisition opportunities and features associated

with each opportunity. See inline for their description.

Initiator Types of Learning
Formal Semi-formal Informal
, L. Receiving in-context support Participating i
A d d — articipating in
Employer | tt;; M‘|IgEma|nﬁatC|er tr:lalnmg| | $ | B | i | d | | mediated social contact opportunities
— Using CR as a learning tool | $ | B | | & | |
[s [B] [#] |
Té Employer & At1.|‘end;ng Tn];plciy;sTonsolr ed tles Attending conferences Collaborating in the workplace
g| Developer — [sss |E W[[| [8 [B] [#] |
= Referring to optional material
e [s [e[m] [|
=
Taking courses Searching online Seeking help
Developer — | $ | B | | & | ») |
| §-99 | L | = | | » | Reading information and | $ | B | | o | |
discussion websites
L s [E] [[#]

$ - lower cost; $$ - higher cost.

E - learning is the developer’s explicit objective; B - learning is a by-product of another activity.

om - high subject-matter expertise (lower expertise when grayed out).
L - activity is part of the SDLC (not part of the SDLC when grayed out).

%) - knowledge source is external to the company (source is internal when grayed out).

Thus, this characteristic should be used to compare activities
relative to each other, rather than, e.g. finding the most reason-
ably priced activity.

® Fit in the developer’s objective (E, B). We use E to indicate
that learning is the developer’s explicit objective for the activ-
ity, whereas B indicates that learning is a by-product of another
activity.

® Source expertise (M). A I indicates that the source of informa-
tion has high subject-matter expertise. It is grayed-out () when
the source of information varies in their level of expertise. Note
that advancement in knowledge can occur through discussions
and sharing of interpretations, even if the teacher does not have
higher expertise than the learner [80].

® Fitinthe SDLC (). A % indicates that the activity is performed
as part of the developer’s tasks (thus part of the SDLC). It is
grayed-out () when the activity is 7ot part of the SDLC.

® Knowledge source (). A # indicates that knowledge is flowing
to the company from external sources. It is grayed-out () when
knowledge is shared within the company.

We built this taxonomy based on our analysis of the interview
data. Though other activities may exist that are not included in the
taxonomy, the taxonomy allows for exploring and reasoning about
activities that induce learning in the context of software security. We
next describe and provide context for each activity presented in the
taxonomy. Table B1 in Appendix B shows which participants dis-
cussed each activity categorized in the taxonomys; it highlights that
all opportunities were discussed by multiple individuals.

Formal learning

For all formal learning opportunities identified, learning is explicit
(E) from the developer’s perspective. In addition, the source of in-
formation, be it an instructor in a training session or an author of
a training manual, is assumed to have high subject-matter expertise

().

Attending mandatory training ($SE M)

This formal learning refers to one-time or regularly scheduled train-
ing activities that employers require developers to complete as part
of their job. Formal security training is usually expected as the first
step for a secure SDLC [7]. Most participants mentioned that they at-
tended mandatory security training when they started their job but,
in most cases, the training focused on general security topics (e.g.
passwords and phishing), and on best practices while using company
resources or sharing company code. Three participants reported at-
tending mandatory on-boarding training that explicitly included as-
pects of software security. In addition to attendance, P1 mentioned
her company requiring that developers successfully pass exams relat-
ing to the training topics.

Beyond initial mandatory training, P5’s company also requires at-
tendance at regularly scheduled training sessions. P5 explains, “We
kept doing [mandatory training], and it’s been quite effective. So as
a result of it being effective, we scaled down the frequency at which
it needs to be done. But it’s not because it’s less important, it’s just
because people started to get it more.” Linking training frequency
to security outcomes could lead developers to find the training more
useful and be more attentive to it. The rationale may be that when
developers are more attentive, they can spend less time on additional

G20Z UDIBIN BZ UO [eSSY BleH Aq L2/ | 208/S005eAY L/| L/aIoie/A1un9as19GA9/woo°dno-olwapeoe//:sdny wouj papeojumoq

Assal et al.

training and they can get go back to their development work more
quickly. In the section “Internalizing software security,” we discuss
how valuing security can impact developers’ performance and pro-
mote software security.

Attending employer-sponsored talks (SE T)

Our data analysis shows that employer-sponsored talks are typically
technical and have specific learning objectives (e.g. introducing a new
security API). This type of learning opportunity is initiated by both
the employer (for hosting the talk) and the developer (for deciding to
attend). These talks are usually given by employees sharing expertise
with colleagues, thus knowledge sources are internal to the company.
P3 mentioned that his company sometimes invites external experts as
well.

Referring to optional material ($E T)

Some companies provide optional security knowledge resources (e.g.
reading material, or video lectures) prepared by in-house experts;
similar to the employer-sponsored talks above, these activities are
initiated by both the employer (for offering the material) and the de-
veloper (for seeking the material). P3 explained, “they do have an
infrastructure, so that people can easily find actual courses taught by
colleagues at this very institution. [...] They have a series of sort of
self seminars, so these are like slideshows or online videos that we
can look at.” P1 mentioned that their material is accompanied by
an assessment test that allows the developer to self-test their knowl-
edge and the company to recognize the developer’s level of security
knowledge.

Taking courses ($-$$E TE #7)

Some participants explained that they took courses or even acquired
a graduate degree to increase or maintain their security knowledge.
Their companies did not require or even encourage them to do so,
thus the initiation of this learning opportunity is internal to the de-
veloper. P11 explained, “For me, I like taking courses |[...| mean |...]
something [that] shows me all the types of vulnerabilities I need to re-
ally be thinking about when I am working on my applications.” The
cost of this activity varies; an online course is likely less expensive
than an on-site course, and both are less expensive than a graduate
degree. Knowledge here is flowing to the company from an external
source (the institute offering the course or graduate degree).

Semi-formal learning

The semi-formal learning opportunities listed here vary in their de-
gree of structure, the presence of learning goals, and the experience
of the information source. Learning may be the developer’s explicit
objective (E) or a by-product (B) of development activities.

Receiving in-context support ($B I &)

Some participants mentioned learning about security through differ-
ent forms of in-context support received while working on their tasks
(%*). Thus, learning from these activities is a by-product (B) of the de-
velopment task. For example, participants discussed that if a security
tester identifies an issue in their code, the tester would then provide
the developer with the specific steps to follow to reproduce the issue,
as well as an explanation of the issue and possible fixes. One partic-
ipant also mentioned that his company pairs developers with more
senior colleagues to disseminate security knowledge across the devel-
opment team. P9 explained that the intention is “to make sure that
the junior [developer] doesn’t feel, you know, like they are left alone
on the issue or they are frustrated or stuck. [They] have somebody to

kinda guide them through the work that they are doing step by step.”
On the other hand, P9’s previous company took this even further and
formed a “security council” from in-house experts to provide security
guidance. The council keeps developers updated on relevant issues to
consider during implementation, and developers are expected to con-
sult this council, e.g. when they need advice. P9 explained, “If there is
anything that we flag up as ‘ok this might have security implications’,
then it goes to them to say ‘ok, do you guys find anything? [Do] you
have any comments on the design? Is there anything maybe we didn’t
think of?””

Using CR as a learning tool ($B &)

Code review is a typical SDLC step where implemented code is in-
spected by reviewers (possibly including the author of the code); these
reviewers typically involve developers, but can also involve testers, se-
curity experts, and other project team members. During code review,
the reviewers collectively aim to find or address code issues, which
is typically primarily focused on functionality issues, but can also
address security bugs [28]. Similar to the in-context learning activi-
ties described above, code reviews allow developers to gain security
knowledge while working on their tasks (%), and security learning
is a by-product (B) of the development task. P1 explained that upon
finding a security issue, reviewers take this opportunity to teach the
developer about its implications and how to fix it. This can happen
face-to-face or through documented code review feedback. She said,
“[Reviewers]| just come right away to your cubicle and explain [to]
you [...| because they feel [that] going and taking a book and read-
ing it would be, mmm, so much painful. So, they just come over to
you and draw on the board and explain what you did and what you
should not do.” In some cases, the reviewer is not necessarily more
experienced than the developer, however, the discussion that arises
during the review session can lead to better insights on code security.
P1 also mentioned that junior developers can act as mock review-
ers to learn about the process and types of issues to avoid in their
code. One of the factors to rate the success of a code review session
discussed by participants is by determining whether the review re-
sulted in information sharing among reviewers and developers. P5
explained, “A good review is one where the development team gets
a better understanding of the security of the application, and the se-
curity team gets a better understanding of how applications are con-
structed and how to interact with the development teams.”

Attending conferences ($-$$SE T =)

Some participants mentioned that they sometimes attend academic
conferences to keep up with new technologies and new security at-
tacks and defences. There is no mandate from their employers to at-
tend such events, although it is encouraged. Employers may reim-
burse their developers for conference registration fees and/or other
expenses. P11 explained, “they do offer wmm, they will pay for us to
go. Like if you want go to a conference that’s, you know, in town,
they’ll pay for the fee to go to the conference.”

Thus, attending conferences is an activity initiated by developers
and encouraged by employers, where learning is an explicit goal (E).
Conference presenters are often considered subject-matter experts
(IE), and likely external to the company (#3). The cost of this activity
varies depending on the conference registration fees, and whether it
includes travel and accommodation expenses.

Searching online ($B % #)

Several online resources are available to help developers in their job-
related tasks, however such resources vary in structure and credibil-
ity. These range from personal blogs and knowledge markets (e.g.

G20Z UDIBIN BZ UO [eSSY BleH Aq L2/ | 208/S005eAY L/| L/aIoie/A1un9as19GA9/woo°dno-olwapeoe//:sdny wouj papeojumoq

Software security in practice

Stack Overflow [58]), to more official resources [e.g. National Vul-
nerability Database [81] and Common Vulnerabilities and Exposures
(CVEs) [82]). We found that when participants use online resources
to fix a security issue, this helps them learn about that particular
security issue while working on their task. Thus, learning from this
activity is considered part of the SDLC (%) and is a by-product of the
activity (B). P3 explained, “frankly, you know, Google search engine.
[basically search things online. So, when there’s something particular
that [need to look into, I basically look it up online and see what the
internet says.” He also explained that he would prefer using “official
resources or more reputable sources,” rather than a blog.

Reading information and discussion websites ($E %))

This activity involves the same resources as in the Searching On-
line activity described above. However, we categorize this into a
distinct activity as participants’ motives for accessing these resources
are different. Contrary to Searching Online, participants in this
activity access the internet resources with the explicit goal of learning
about security. Thus, learning in this activity is explicit (E) and not
part of the SDLC ().

Participants explained that they use internet resources to stay
up-to-date on security vulnerabilities. For example, P9 explained his
strategy, “[I follow a] couple of blogs, just general websites as well
that might point out some new vulnerability. If I want to go in depth
on something, then, you know, we can read about its CVE for that
thing.” Our participants’ recounts of their use of discussion websites
indicates that they did not actively participate in discussions, rather
they were passive learners reading about the security topic and the
available discussion.

Informal learning

Informal learning activities identified herein fall under “learning by
experience” [76]. For all these activities, learning is a by-product (B)
of the development tasks performed as part of the SDLC ().

Participating in mediated social contact opportunities ($B &)
Some participants gained security knowledge while participating in
group activities enabled by their employers. For example, some par-
ticipants mentioned that they discuss work impediments during team
meetings, including security issues they face and how these could
be addressed. Others mentioned that they work in open-plan offices
which often stimulates discussions. P10 said, “We all sit relatively
close together, so if someone finds something, they might just sort of
say ‘OK, does anyone know about this?” “Why are we doing it this
way?”” P10 explained that they value these general discussions as
they allow developers to stay informed about security vulnerabilities
and prevent vulnerabilities in their code.

Collaborating in the workplace ($B %)

We found that participants learned about security during collabora-
tions with members of other teams through interactions and discus-
sions between teams. In our interviews, participants described mul-
tiple instances of different teams working together, e.g. testers work-
ing with developers to better understand the purpose of the code,
and thus being able to better analyze potential vulnerabilities. P2 ex-
plained, “Usually, if [the testers] think there’s a problem, they really
wouldn’t go abead and publish the bug like this; they would work
with us. They'd be like, ‘do I understand this correctly? Is this the
correct behaviour?® [...] So, it’s a process before the bug actually
gets submitted.” Such collaboration with other teams provides mu-
tual benefits; it allows for “information sharing” (P11) between the

different teams, can help bridge the knowledge gap [68], and reduce
contflicts. Conversely, poor communication and a disconnect between
teams who are working together leads to tension; this can result in
conflicts between the teams and poor security outcomes. P8 exempli-
fies this through his development team’s frustration with the testing
team, “[The relationship between the testing and development team
is| bad. [chuckles] I mean, usually, you just pass them the code and
then, they run through test cases and, you know, if they fail, they’ll
just come back say ‘fail’. And then they don't..., because people who
[are] doing the testing, they have zero knowledge about the code it-
self.” Such disconnect may be due to conflicting goals between teams
(e.g. functionality for developers, and security for security testers),
and may require building a shared sense of responsibility between
the teams. The section “Multiple activity systems interacting within
project teams” discusses workplace collaborations in more detail.

Secking help (B &)

Participants also described multiple instances where they turned to
their colleagues for help. This is different from Collaborating in
the Workplace, as help seeking here is informal and random, oc-
curring only when the developer needs help while working on their
tasks, rather than, e.g. a follow-up on testing results. In addition, the
developer seeking help is usually the main beneficiary of the knowl-
edge shared. P4 explained, “if I need advice from someone, I would
usually ask, you know; ‘I'm looking at this thing here, how would
you go with doing it?” We kind of just talk back and forth, it’s usu-
ally pretty free form and open.” Our participants also mentioned that
they sometimes seek help to answer more specific questions relating
to specific security issues. For example, P1 explained that if she can-
not fix a security issue in her code, she asks a teammate who faced a
similar issue how they fixed it. Although this activity is initiated by
the developer, it is sometimes performed even by unmotivated devel-
opers albeit after procrastinating. P2 explained, “In my experience
[some devs] would delay [asking for help]. They'd work on things
for months and then over coffee they'd be telling me what they’re
looking at and I'd break it in 2 minutes |[...]. And they would be like
[chuckle] ‘okay, let’s do this again’.”

In summary, all the activities (Formal, Semi-Formal, and In-
formal) discussed herein improve developers’ security knowledge,
though participants’ favored in-context learning activities (Semi-
Formal and Informal). In-context learning may be preferable since
it fits within developers’ existing objectives, thus allowing develop-
ers to learn about security while working on their routine develop-
ment tasks. In other words, casual and social exchanges of security
information during regular work activities are more meaningful, and
the encouragement of a culture of security knowledge sharing is ben-
eficial. Participants also found (Formal) security training activities
useful, however it is important to adapt the frequency of training ac-
cording to the needs of the trainees and to incorporate the training
activities into their regular workload.

Motivation for software security

In this section, we focus on RQ2, specifically what motivates devel-
opers to adopt or forgo security practices and tasks.

Through our analysis (see Fig. 3), we identified different motiva-
tions to adopt software security practices, as well as several factors
that may induce developers’ amotivation despite their knowledge and
belief of the importance of security. Classifying the motivations as
either intrinsic or extrinsic was too simplistic (e.g. the extrinsic mo-
tivations we identified varied in their driving forces from an external

G20Z UDIBIN BZ UO [eSSY BleH Aq L2/ | 208/S005eAY L/| L/aIoie/A1un9as19GA9/woo°dno-olwapeoe//:sdny wouj papeojumoq

10

Assal et al.

Figure 3. Analyzing motivations and amotivations for software security. Left: looking for patterns, right: identified patterns in amotivation.

mandate to the developer’s sense of responsibility), thus we use SDT’s
autonomy-control continuum [37,39] to present our results. This
continuum, explained in the section “Theoretical background on
Self-Determination Theory,” describes human motivation in learn-
ing environments using motivators ranging from extrinsic forces (e.g.
compliance to external requirements) to intrinsic forces (e.g. self-
interest). Table C1 in Appendix C, presents qualitative analysis codes
corresponding to the software security (a)motivations found in our
data, explains each code, and presents a corresponding sample quo-
tation.

Figure 4 presents (a)motivations identified in our study on the
self-determination continuum. At the leftmost end of the continuum
(colored orange), we present amotivations that led participants (or
their teams) to neglect software security. To the right, we present
software security motivations. As we move toward the right, activity
regulation increases in autonomy. Motivations under “external regu-
lation” and “introjected regulation” are colored separately (yellow),
because these motivations are not truly internalized (i.e. these mo-
tivations do not come from within the actor) and are contingent on
their perceived outcomes (e.g. they are performed to comply with reg-
ulations or to maintain self-esteem). Motivations under “identified
regulation” and “integrated regulation” (light blue) are more inter-
nally driven, and along with “intrinsic motivation” (dark blue), they
present the most favorable types of software security motivations.

Note that security practice herein refers to practices developers
can do to address security in their code, which may differ from secu-
rity best practices such as performing static analysis or threat model-
ing [28]. We focus on these practices since our goal is to understand
developers’ security motivations (i.e. willingness to address security
issues) rather than compare with best practices.

Amotivation
Through our data analysis, we identified three main reasons for par-
ticipants’ neglect of software security.

Amotivation—perceived lack of competence

Our analysis revealed thata lack of resourcesanda lack of
support are two factors that led to a perceived lack of competence
to address software security. Some participants indicated that their
teams do not have the necessary budget, time, people-power, or exper-
tise, to properly address security in their SDLC. We also found that
this lack of trust in their ability to address security occurs when teams
do not have a security plan in place, when security tools are nonexis-
tent or lacking, and when developers are unaware of the availability
of such tools. For example, P4 said, “I wish [knew of [security] tools,
but unfortunately 1 don’t really know of any tool. So, I would prob-
ably be happy to say I would like to use some tools, but I don’t know
of any. I kinda wish 1 did, but I don’t.”

Amotivation—lack of interest, relevance, or value

This type of amotivation comes from the lack of interest, relevance,
or perceived value of performing security tasks. The lack of relevance
happens when security is not considered to be one of the developer’s
everyday duties (not my responsibility), or when security is
viewed as another entity’s responsibility (security is handled
elsewhere), such as by another team or team member. Our analysis
shows that when this is the general attitude within a team, it can have
detrimental effects such as induced passiveness. It could lead
developers (even those who believe in the importance of addressing
security) to become demotivated toward security and rather focus on
their ‘more valuable’ existing duties. For example, P9 said, “I don’t

GZ0Z UoIBlN 6Z UO [essy eleH Ad 1.Z/1208/5004eAy/ L/ L/elonie/Ajundesiagqho/woo dno-ojwepeoe/:sdiy woly pepeojumod

Software security in practice

1

Amotivation Extrinsic
motivation
Perceived lack of competence External Introjected Identified Integrated
Lack of resources Lack of support Audit fear Prestige t'}’"é‘jifn’ffliacna‘z:ggs rz‘;‘gg:g:g{;ﬁ; Self-improvement
z Company Concern
Lack of interest, relevance, value Seelhresibes e orem
Not my Security is
responsibility handled elsewhere
Shared
Induced passiveness No perceived loss Pressure responsibility
No perceived risk Competing priorities T Thdiiced
advancement initiative

Defiance/Resistance to influence

Inflexibility

Externally-driven
motivations

"N

Problematic for security

Figure 4. The self-determination continuum of software security. Amotivations (orange) are presented at the leftmost end of the continuum (problematic for
security). Towards the right, motivations are presented in increasing order of activity regulation (better for security). In the middle, extrinsic motivations are
shown in two different blocks to highlight the externally driven motivations (yellow) and the internally driven motivations (light blue). Intrinsic motivations, at
the rightmost end (blue), are always internally driven and are more favorable for security.

really trust [my team members] to run any kind of like source code
scanners or anything like that. I know I'm certainly not going to.”

Additionally, our analysis shows different reasons why security ef-
forts lack value for some participants in our dataset. First, we found
that some participants are influenced by the optimistic bias [83],
thinking that attackers would not be interested in their applications,
or that they are not in an organization big enough to be a target for at-
tacks. Thus, as they see no perceived risk, security efforts lack
value. P7 said, “For a small company, nobody will usually attack or
compromise the vulnerabilities in your system. If something really
bad happens, usually, you don’t really get enough [bad] reputation as
well.” We also found that when there are no perceived negative con-
sequences to the individuals or to the business from the lack of se-
curity (no perceived loss),then security efforts lack value. For
example, when developers are not held responsible for security issues
found in their code, they would rather spend their time on aspects for
which they will be held responsible. P7 explained, “[If] I made a bad
security decision, nobody would blame me as much as if made a de-
cision that [led] to a [functionality] bug in the system. So the priority
of security is definitely lower than introducing bugs in the system.”
Moreover, as different tasks compete for resources (e.g. the devel-
oper’s time in the previous quote), when security has no perceived
value, those tasks deemed more valuable are prioritized.

Amotivation—defiance/resistance to influence

The final amotivation we identified is inflexibility. We found
that some developers ignored security, not because it is difficult to
comply, but rather because it conflicts with their perception of the
proper way of coding, or their personal coding practices. P9 ex-
plained how one of his team members resists using a framework
in the proper way, despite having “gotten into so many arguments”
with his manager, “I can tell he is very self-absorbed with his own

thoughts, and he thinks that what be says is somehow the truth, even
if it doesn’t necessarily pan out that way.”

Extrinsic and intrinsic motivations

Externally driven motivations—external and introjected

Our analysis shows that addressing security can be driven by the de-
sire to be recognized as the security expert or to receive acknowl-
edgement (prestige), which helps in maintaining self-esteem and
self-worth. P1 explained, “When [somebody] clicks your name [on
the employee website] and checks, it shows a badge that you’re ‘se-
curity certified’, which gives you a good feeling.”

In addition, we found three external motivations that are driven
by the desire to avoid negative consequences associated with a lack
of security: an overseeing entity finding non-compliance with regula-
tions (audit fear), losing market share or market value due to a
security breach (business loss), and being monitored and pres-
sured by managers (pressure). P2 explained, “We have a safety
audit [conducted by an auditing organization]; all these guys they ac-
tually send auditors to us every, I don’t know, however many months
[..], and they look at the process. They, you know, scan every single
check-in, every single review, [...] and they say ‘oh, no! You haven’t
done that, you lose your certification.” [If] we lose our certification,
[then] we have no company, we have no customers.” Another exter-
nal security motivation identified in our data is receiving rewards in
the form of career advancement [e.g. “promotions or mov[ing]
throughout the scales and employment bands” (PS5)].

Internally driven motivations—identified and integrated

As shown in Fig. 4, there are three types of internally driven moti-
vation, ordered from left to right in the figure by the degree of inter-
nalization. Those to the right are considered most favorable [38].

GZ0Z UoIBlN 6Z UO [essy eleH Ad 1.Z/1208/5004eAy/ L/ L/elonie/Ajundesiagqho/woo dno-ojwepeoe/:sdiy woly pepeojumod

12

Assal et al.

We first discuss those falling in the extrinsic motivation category,
specifically motivations with Identified and Integrated regulation (cf.
section “Theoretical background on Self-Determination Theory”).
Discussion of intrinsic motivation follows later.

For extrinsic motivation, professional responsibility
and concern for users are two motivations where the action
is not performed for its inherent enjoyment, but rather to fulfill what
the developer views as their responsibility to their profession and to
safeguard users’ privacy and security. These motivations are a type
of integrated regulation, where the actor recognizes the importance
of the tasks involved and thus accepts the goals associated with the
tasks. For example, P3 said, “I would not feel comfortable with basi-
cally having something used by end users that I didn’t feel was secure,
or I didn’t feel respective of privacy, umm so I would try very hard
to not compromise on that.”

In addition, we identified motivations where participants view
the goal of addressing security as personally important (i.e. identified
regulation). For example, our analysis shows that understanding
the implications of ignoring or dismissing security increased
security awareness and motivated developers and their teams to in-
tegrate security in their SDLCs. P4 explained, “I know for me per-
sonally when I realized just how catastrophic something could be,
just by making a simple mistake, or not even a simple mistake, just
overlooking something simple. ubb it changes your focus.” This was
especially true when the understanding came through practical ex-
amples of how the developer’s code could lead to a security issue or
through experiencing a real security issue at work. Caring about the
company reputation and recognizing how it could be negatively
affected in case of a security breach is another example of identified
regulation motivation. Participants were also motivated to partici-
pate in security activities when security was a shared responsi-
bility for the project team rather than the responsibility of one
individual alone. This could in turn have a snowball effect and moti-
vate additional team members to recognize the importance of security
since their colleagues do (induced initiative).Forexample, P7
said, “When you see your colleagues actually spending time on some-
thing, you might think that ‘well, it’s something that’s worth spending
time on’, but if you worked in a company that nobody just touches
security then you might not be motivated that much.”

Internally driven motivations—inherent satisfaction

We classify self-improvement as (the only) intrinsic motivation
to security. It is driven by the developer’s own interest in security and
the self-satisfaction of producing issue-free code. For example, P1
said, “And sometimes I will challenge [myself], that ‘okay, this time
I'm going to submit [my code] for a review where nobody will give
me a comment’, though that never happened, but still...”

Internalizing software security

During selective coding (the last coding stage in Grounded Theory),
we recognized that our themes from the previous coding stage could
be connected by a central theme about internalizing security—the
driving force behind participants’ security practices being their own
will as opposed to external factors. In our data, we saw varied mo-
tivation toward security and varying degrees of internalization. For
example, some participants spoke of the importance of security tasks
and how they personally value these tasks, while others were indiffer-
ent to security and indicated that security tasks are only performed to
satisty an external driving force. Through our analysis, we found that

participants who were internally motivated toward software security
were more accepting and willing to adopt security practices.

We developed a human-oriented model that describes the process
of internalizing software security based on our analysis (see Fig. 5).
The end goal in this model is developers’ internalization of software
security, where they act toward security with autonomy and volition.
This can apply to developers with varying level of motivations, in-
cluding developers who are initially amotivated. In other words, the
process of internalizing can begin at any point in the continuum of
amotivations and motivations (shown in Fig. 4). Internally motivated
actions are often associated with positive outcomes, such as increased
engagement in the activity, improved performance, more cognitive
flexibility, and better learning [38,40]. All of these outcomes would
be useful and important for software security given its complexity
and how it is commonly de-prioritized in software development in
practice. As shown in Fig. 5, the two levers that influence this inter-
nalization are “(perceived) competence” and “relatedness”; the first
refers to the developer’s software security abilities and their percep-
tions thereof, while the latter is the developer’s sense of connection
to their project team. Naturally, all the software security learning op-
portunities discussed in Table 2 (indicated by the purple box in Fig. 5)
help improve developers’ (perceived) competence. Additionally, when
these activities involve collaboration with other team members (indi-
cated by the pink box in Fig. 5), this can improve relatedness through
increasing the developer’s bond with other members and their sense
of belonging to the project team. With improving (perceived) compe-
tence and improving relatedness, developers’ autonomy to act toward
software security improves, thus encouraging internalization of soft-
ware security. Internalization is a continuous process, with the learn-
ing opportunities identified in our data acting as the enduring impetus
for improving competence and relatedness, and in turn creating two
feedback loops fueling developers’ internalization. We describe this
process next.

Improving performance—valuing security loop

Acquiring software security knowledge and expertise (e.g. through
company-organized security training or through receiving in-context
support during development tasks) improves developers’ competence
and their confidence in their ability to address security in their code
[i.e. (perceived) competence]. To encourage security learning among
amotivated developers, employers could rely on activities initiated
by the employer and activities initiated by the employer and devel-
oper (i.e. activities in the top two rows of the table in Fig. 5), with
the aim of gradually moving these developers toward more internally
driven motivations. Acquiring security knowledge drives the improv-
ing performance—valuing security loop (center left section of Fig. 5),
as described next.

When developers’ security knowledge improves, this improves (1)
their competence (i.e. their awareness of the negative consequences
of ignoring security, and their ability to address security) and (2) their
perceived competence (i.e. their confidence in applying their knowl-
edge). This leads to developers valuing security and thus encourages
them to adopt security practices with improved autonomy (i.e. their
actions are more internalized). In turn, with improved autonomy,
developers persevere in their security practices (e.g. through critical
thinking, asking for help from security experts) which results in im-
proving performance. As developers observe positive outcomes from
their security efforts, this further improves their perceived compe-
tence. And with each cycle through the loop, developers are likely to
engage in further knowledge acquisition activities.

For example, a developer takes a course on Cross-Site Scripting
(XSS) vulnerabilities [84], which improves their competence and per-

G20Z UDIBIN BZ UO [eSSY BleH Aq L2/ | 208/S005eAY L/| L/aIoie/A1un9as19GA9/woo°dno-olwapeoe//:sdny wouj papeojumoq

Software security in practice

13

Initiator Types of Learning
Formal Semi-formal Informal
. Attending y training Receiving in-context support Participating in
% 2 sS [E | B [W[@ diated social contact opportunities
Using CR as a learning tool B

S Attendi loyer- d talk
Employer & E" s ding conferences Collaborating in the workplace
Developer [S-SS [E [i]] -* [[S] B |

Referring to optional material

ofe
[s [[M[T]

More internal

Taking courses

Developer |} [sssTE M| [#]

Searching online

Seeking hel,
[FIBTAT81a] | s kT6Te]

Reading information and
discussion websites

[s TE[T[E 9]

improving performance

valuing security

improving commitment

improved
T autonomy

Figure 5. Internalizing software security model. The model shows the process by which the security knowledge activities (from Table 2) contribute to the
continuous internationalization of security and to improving the developers’ autonomy toward software security.

ceived competence. This helps the developer value security as they
understand the implications (cf. Fig. 4) of having this vul-
nerability in their code, which could allow attackers to steal sensitive
user data (concern for users). Equipped with this new security
knowledge and confidence in their abilities, the developer is more in-
ternally driven toward addressing XSS vulnerabilities in their code
(improved autonomy). This autonomy leads the developer to spend
the time and effort on protecting their applications against XSS at-
tacks, thus improving their performance and leading to improved
competence. And the loop continues.

Improving commitment—valuing security loop
Many security learning activities we have identified involve collabo-
ration among team members and across different teams within the
company (shown within the pink box in Fig. 5). In addition to im-
proving security knowledge, these activities help individuals develop
a sense of relatedness to their project team and its security goals, driv-
ing the improving commitment—uvaluing security loop (center right
section of Fig. 5). We describe next.

Collaboration encourages individuals to recognize the project
team’s overall goals beyond their own individual goals (e.g. function-
ality for developers or security for security engineers) and to feel con-

nected to their team (improved relatedness). When the project team
prioritizes security, this leads to individual developers also valuing
security. Working toward this shared priority, each individual seeks
to contribute to the team with volition (i.e. improved autonomy) and
thus, becomes more internally driven toward adopting security prac-
tices. Improved autonomy leads to improving commitment from the
developer toward their team and its security goals, which in turn
leads to improved relatedness to the project team. With each cy-
cle through the loop, the developer engages in further collaborative
knowledge acquisition activities.

For example, a developer and a tester collaborate on fixing an
XSS vulnerability in the developer’s code, which includes discussing
how this issue affects the team’s software security goals. As the de-
veloper works together with the tester and feels that “people are
watching out for [her]” [P10], the developer deepens her sense of
belonging (cf. Fig. 4) to the team, which leads to improved re-
latedness. The developer will thus come to value security and view
it as a shared responsibility (cf. Fig. 4), aligning with the
objectives of the project team to which she belongs. Consequently,
the developer is more internally driven to address the XSS vulnera-
bility in her code (improved autonomy). With improved autonomy
and willingness to contribute to her team, the developer becomes

GZ0Z UoIBlN 6Z UO [essy eleH Ad 1.Z/1208/5004eAy/ L/ L/elonie/Ajundesiagqho/woo dno-ojwepeoe/:sdiy woly pepeojumod

14

Assal et al.

increasingly committed (improving commitment) to this shared se-
curity goal. This in turn reinforces the developer’s relatedness to
her team and promotes further collaborative knowledge acquisition
activities.

An ongoing process of internalization

As developers’ (perceived) competence and relatedness increase, they
gain and deepen their sense of belonging and their sense of responsi-
bility, to their team, company, and society. Thus, developers go into a
continuous process of internalizing the externally driven (or amo-
tivated) security activities (i.e. their motivations move toward the
right-side of Fig. 4), a process of active learning and self-growth [39].
And consequently, as developers’ security practices are internalized,
they can perform these practices with better performance, which im-
proves the security of their applications [38,40].

Factors affecting internalization

Our previous analysis related to security practices [28] describes fac-
tors that affect security practices in development teams. Here, we
discuss a subset of these factors that could help expedite, or hinder,
the process of internalizing software security practices.

Prior security knowledge

The duration it takes to fully internalize software security (cf. Fig. 5)
would likely be influenced by the developer’s existing security knowl-
edge and awareness. Under the same conditions, developers who al-
ready have prior background in security or have some awareness
of its implications would likely internalize and accept security more
readily than those who do not. In addition, developers who are re-
currently exposed to security learning opportunities (e.g. through in-
context learning activities) may be more likely to internalize security.

Company culture

As our analysis revealed, the attitude toward software security by the
developer’s team, supervisors, and those up in the company hierar-
chy has a substantial effect on the developer’s motivation to learn
about and internalize security. Developers whose teams view secu-
rity as a shared goal and responsibility are more likely to adopt this
view. Such teams typically follow a security plan. This can be both a
cause and an effect of internalizing security; they develop a security
plan to motivate security, and their motivation to security improves
their security plan (recall that internalization is an ongoing process).
Likewise, developers who recognize that security is valued by senior
management can be inspired to take an interest in security. For ex-
ample, P12 recounted, “As I was working with [my CTO], he was
telling me [about] all these different kinds of possible attack vectors
that may happen, such as, what happens if the attacker gets access
to the actual heap of the program, the memory |[...] So stuff like that,
T've never had to experience before [...] So, it was really, really inter-
esting.”

Resource availability

Resource availability can substantially affect motivation, both for in-
dividual developers and for the entire development team [28]. For ex-
ample, when time is limited, developers preferred to prioritize their
primary tasks; only those who are highly motivated to focus on secu-
rity would ask for a deadline extension. In cases where the extension
request was denied, security would either be deferred or the team
would have to assign (or hire) extra personnel. However, with a lim-
ited budget, this may not always be possible.

Limitations and future work

Our sample size follows the norms this type of qualitative research
methodology; we stopped recruitment only after reaching data satu-
ration [73] (i.e. when new data did not add new insights relating to
our research questions). A future study could use quantitative meth-
ods to assess the prevalence of the different aspects of our internal-
ization model.

Like all interview-based research, our data is self-reported, which
may not necessarily fully represent developers’ reality. To address
this, we assured participants that their responses would be anony-
mous and that they may skip any questions they are not comfortable
answering, thus minimizing social desirability bias. To avoid prim-
ing participants on security, our study description did not mention
“security” and the interview focused on all aspects of software de-
velopment, which would naturally include security.

In this paper, we focus on software security in the professional
context, so all our participants are employed as software developers.
Thus, our results may not be generalizable to other types of develop-
ers (e.g. open-source developers). Additionally, all our participants’
organizations are based in North America, hence our results may
not be representative of organizations in other regions. Future work
could focus on security knowledge acquisition opportunities and se-
curity (de)motivators of software developers in different contexts and
locations. Another future research direction includes comparing the
different security learning activities and examining their effectiveness
so that organizations could prioritize those activities most likely to
be effective for their context.

Future work could also examine how to integrate collaborative
knowledge sharing opportunities into developers’ existing communi-
cation methods and platforms. For example, it may be useful to intro-
duce a security-focused branch within platforms like Stack Overflow
[58] to help developers find and share security knowledge. We also
suggest that future work should consider a deeper analysis of inter-
team collaboration and how security knowledge flows across teams
(i.e. how multiple activity systems interact during knowledge sharing,
see the section “Multiple activity systems interacting within project
teams” for further discussion).

Discussion and conclusion

In this paper, we focus on human aspects of software security in prac-
tice, specifically how developers acquire security knowledge (RQ1)
and their motivations toward software security (RQ2). We now re-
visit the research questions and discuss our findings to provide further
insights.

RQ1: Security knowledge acquisition

We created a Knowledge Acquisition Taxonomy (Table 2) categoriz-
ing the different security learning activities identified in our data. For-
mal learning was the least commonly reported learning type among
our participants (cf. Table B1 in Appendix B). This included activities
such as regularly scheduled training sessions, and learning resources
(e.g. video lectures) provided by employers and often prepared by in-
house security experts. In contrast, the most common security learn-
ing opportunities resulted as a by-product of the developer’s tasks
and responsibilities. Such tasks involved collaboration with the de-
veloper’s teammates (e.g. pair programming) or with members from
other teams within the organization. For example, during code re-
view tasks, participants mentioned discussing security issues relating
to their software with security testers, which increased participants’
security awareness. In addition, this type of collaboration also al-

G20Z UDIBIN BZ UO [eSSY BleH Aq L2/ | 208/S005eAY L/| L/aIoie/A1un9as19GA9/woo°dno-olwapeoe//:sdny wouj papeojumoq

Software security in practice

15

lows other teams (such as security testing teams) to learn about is-
sues relating to software development. Collaborative activities such
as these can bring together multiple perspectives (multi-voicedness,
cf. the section “Theoretical background on activity theory”) and can
help bridge knowledge gaps between teams. This type of knowledge
sharing can also motivate developers to internalize security, which
in turns improves their perceived competence in addressing security
issues, as discussed in the section “Internalizing software security.”

RQ2: Software security motivations

We identified varying motivations (including amotivations) toward
software security; we presented these using the autonomy-control
spectrum of the Self-Determination Theory [37] (Section “Motiva-
tion for software security”). We found that developers tend to ignore
security when they do not perceive value in focusing their efforts to-
ward it. In particular, when security is not among their primary re-
sponsibilities, our participants tend to focus on the other considera-
tions for which they will be held responsible. Such security devalu-
ation can have dangerous consequences as it could demotivate even
developers who consider security to be important. In contrast, we
found that a team culture promoting security as a shared objective
and responsibility motivates developers to value security and strive
to produce secure code. By belonging to this culture, the developer is
driven to internalize software security and thus acts toward it of their
own will, e.g. out of personal interest or out of their concern for users.
This further strengthens their bond to their team and its objectives.
While developers may adopt security practices due to external moti-
vators (e.g. to avoid negative consequences such as audit failures and
loss of reputation), internally driven motivations are more favorable
for security as per SDT, e.g. for improved performance, encouraging
creativity, and fostering learning (Section “Theoretical background
on Self-Determination Theory”). We developed a human-oriented
model to describe the process of internalizing software security in
the section “Internalizing software security.”

Multiple activity systems interacting within project
teams

Our internalization model (in Fig. 5) described how collaborative
knowledge acquisition opportunities are beneficial for improving
both security knowledge and motivations toward software security.
We reflect on these collaborative opportunities identified in our data
through the lens of Activity Theory (recall the section “Theoretical
background on activity theory”). We look at a software development
project team (consisting of a development team, a testing team, etc.)
as a system of multiple interacting activity systems (see Fig. 1). We
focus specifically on the interaction between the development team,
represented by the development activity system, and the security test-
ing team, represented by the security testing activity system. Each
team considers the software from a different perspective and has its
own background, points of views, and objectives (multi-voicedness
[35]). For example, a development team would focus mainly on func-
tionality, whereas a security testing team focuses on security.

Some project teams attempt to benefit from their multi-voicedness
through communication, negotiations, and resolving conflicts. This
allows the activity system to become more interconnected [35]. For
example, when the development and security testing teams collabo-
rate and harmonize their perspectives and objectives, this could lead
to increasing security knowledge within both teams and to satisfying
both teams’ objectives: a functioning software for the development
team and a secure software for the security testing team. Collabo-
rative opportunities identified in our knowledge acquisition taxon-

omy (Table 2) can facilitate such inter-connectivity. These opportu-
nities are also highlighted in the right section of Fig. 5. For example,
when a developer and a security tester work together to fix a vulnera-
bility (Collaborating in the workplace), we see knowledge
acquisition happening across multiple activity systems.

P5 recounts that to support collaboration, the security testers
“have full access to the development team, so they can coordinate
as much as they want.” This collaboration allows testers to have a
good understanding of the features they are testing, write better tests,
and minimizes conflicts between testers and developers. P2 provided
an example of how successful collaboration between developers and
testers helped avoid overlooking a serious security issue due to a gap
in the tester’s understanding of the system. He said, “a [tester] [...]
was testing some memory issue in the kernel. While he was doing the
test, he wanted to access kernel memory from the user process. So,
his test actually succeeds to get to the kernel memory. He’s [thinking]
if I can get to the kernel memory, everything is fine, continue on.” So
I look at the test and I'm like ‘dude, |...] the test actually did discover
a flaw, but you didn’t tell me about it. This is a false negative.’ [...] So,
this [happened] because of the lack of understanding.” In contrast, a
lack of collaboration or breakdowns in the developer-tester relation-
ship can be detrimental. For example, P8 described the relationship
between the developers and the testing team as “bad” due to a lack
of collaboration and a lack of testers’ understanding of the software
functionality.

Developers also benefit from such collaboration as it helps
them stay updated on the constantly evolving security issues (e.g.
[12,85,86]). Given that security is not the developer’s primary ob-
jective, as evidenced by our data and previous work [16-19,24], it is
unrealistic to expect that developers will be able to remain informed
about these issues on top of their development tasks. In addition, se-
curity information is often presented in a manner that is unusable
to developers [87,88]. Thus, collaborating with those with higher se-
curity expertise gives developers an opportunity to stay updated on
new security issues, and it could also lead to improving performance
and motivation toward adopting security practices.

Practical use for the knowledge acquisition taxonomy
The knowledge acquisition taxonomy presented in the sec-
tion “Knowledge acquisition taxonomy” describes different security
knowledge acquisition opportunities. Our data shows that implicit
learning, especially when it is part of the SDLC, can be more effec-
tive than other types of learning, and can have a positive impact on
software security. For example, our findings show that developers are
more willing to engage in learning about security when it is combined
with their existing tasks. This finding supports previous research rec-
ommending teaching developers about security in context [57,68].

Practitioners (e.g. employers, team leads) can use this taxonomy
to induce software security learning opportunities within their orga-
nizations. With improved security knowledge, developers are more
prepared to address software security, and, as detailed in the sec-
tion “Internalizing software security,” they may be more motivated
and willing to do so.

Which activities should my organization adopt?

When choosing activities, practitioners should take into considera-
tion the different features of each activity and developers’ initiative.
Based on our analysis, we have identified the following three main
aspects to consider when deciding on activities to promote security
knowledge.

G20Z UDIBIN BZ UO [eSSY BleH Aq L2/ | 208/S005eAY L/| L/aIoie/A1un9as19GA9/woo°dno-olwapeoe//:sdny wouj papeojumoq

16

Assal et al.

Initiative. If the developer (being the learner) is motivated to learn
about security, then all the activities listed in the taxonomy are suit-
able. However, in case of an amotivated developer, it is unlikely that
they would initiate an explicit learning activity. Thus, the employer
could instead look into initiating (or at least partly initiating) learn-
ing opportunities. Ergo, activities listed in the first, and perhaps the
second row, of the taxonomy (Table 2) may be suitable. In addition,
learning opportunities that are a by-product of the developer’s main
tasks (B ¥¥) avoid competing for the developer’s time and may be bet-
ter received by such developers, especially those opposed to manda-
tory explicit learning (e.g. mandatory training).

Experience. Organizations that lack in-house security expertise
should avoid activities that require high internal security expertise.
They could consider activities without that requirement (i.e. those
marked with), or activities with security expertise external to the
company (i.e. those marked with T and #9). When relying on exter-
nal expertise, it is important to check the source’s credibility and to
encourage developers to use credible sources; developers often rely on
external resources that are not necessarily ideal for security [60,89].

Budget. The available budget that the employer is willing to allocate
for promoting security is another deciding aspect. Fortunately, most
learning opportunities derived from our interviews are relatively low
cost. However, as the affordability of an activity varies between com-
panies, employers would need to decide on the most useful activity
that fits their budget. In addition, some employers may wish to invest
in more expensive learning opportunities, such as offering security
courses to their developers, or by hiring external security experts to
provide in-context support to developers. Although the latter did not
come up in our interviews, it has been reported elsewhere [90].

Expanding the taxonomy

This taxonomy is not exhaustive, thus employers could map their
own activities onto the taxonomy to compare and determine whether
they are a good fit for them and their developers. For example, or-
ganizations sometimes use Capture The Flag (CTF) events to sup-
port security learning [91,92]. CTFs [93] are competitions where
teams work together to solve coding challenges; developers thus learn
through hands-on experience while socializing and competing on the
challenges [91,92]. Within the taxonomy, CTFs would be considered
as semi-formal learning opportunities, and placed in the Employer &
Developer initiator row on Table 2, alongside conferences. Since the
primary reasons for participating in CTFs are socialization, prizes,
and bragging rights [91,92], learning is a by-product (B). CTFs are
also not part of the SDLC (), and the security expertise of team
members can vary based on their individual experiences and knowl-
edge (). Knowledge could be from external (#3) or internal sources
(), depending on the setup and location of the CTFE.

Motivating developers toward adopting security
practices

Finding the best way to motivate developers is not a trivial task. Even
though external rewards and punishment may help induce external
motivation, previous research in other domains [38,94-96] suggests
that these approaches can have detrimental consequences, such as
negatively influencing conceptual learning and problem solving. For
example, externally motivated developers might gain limited knowl-
edge about individual security issues rather than gaining an under-
standing of the underlying security concepts that may be necessary
for solving new security issues. Thus, relying solely on external moti-

vations may contribute to the poor performance and inadequate se-
curity practices identified in previous work (e.g. [28]). Of the partic-
ipants who had external motivations for security (e.g. audits), those
who also had internal motivations had better security practices than
those who did not.

Based on our findings, internal motivations are more favorable
for practicing software security compared to other motivation types.
Thus, guided by our analysis, we built a security internalization
model (Section “Internalizing software security”) to explain how
software security practices can be transformed to be internally moti-
vated, rather than an external chores. Such transformation occurs by
recognizing the value of incorporating software security and believ-
ing in one’s ability to have an impact on the security of the software
being built. To improve chances of success, security tasks should be
accompanied by improving the team’s morale when it comes to se-
curity. Based on our data, this can be through adopting a security
culture, supporting developers in these tasks, providing positive en-
couragement, and allowing teams to see value and identify with such
tasks. In addition, the internalization of security can be reinforced by
promoting developers’ security awareness which helps to improve
their confidence in addressing security issues. Thus, we recommend
that development teams focus on both increasing security awareness
and improving developers’ motivation to achieve positive security
outcomes.

The role of Artificial Intelligence

Use of Artificial Intelligence in software development

Since our participant interviews, there have been significant advance-
ments in Artificial Intelligence (AI) tools such as ChatGPT (https:
/Ichatgpt.com/). These tools are now used by developers [97,98] as a
resource for explaining concepts and providing instant feedback [99],
and to generate code or automate routine tasks [100]. However, de-
velopers relying on Al-generated code could introduce more security
vulnerabilities compared to those not using Al, and yet have false
confidence in the code’s security [101]. In fact, Khoury et al. [102]
identified various security vulnerabilities in Al-generated code, in-
cluding code injection, buffer overflow, and XSS vulnerabilities. This
could be the result of the AI models being trained on data obtained
from the internet, which may include unverified or insecure code sam-
ples [101,103,104]. The security implications of adopting Al tools in
software development remains unclear and warrants further investi-
gation.

Impact of Al on security knowledge

Developers may learn about security from interactions with Al tools,
e.g. when debugging code or searching for information. However,
their learning may be limited to the particular solution they seek
(e.g. how to request user input) without gaining an understanding of
relevant security concepts (e.g. code injection attacks). Additionally,
information generated by Al tools may be inaccurate, outdated, or
incomplete [105]; and without contextual details relating to the de-
veloper’s work (e.g. their application’s threat model), Al tools” output
may be of limited applicability [106]. The quality of Al-generated in-
formation is also greatly dependent on the specifics of the developer’s
prompt; minor prompt variations could substantially change the out-
put [107]. Developers with limited security expertise may thus face
challenges when using Al tools to obtain security information. On
the other hand, developers who rely heavily on Al tools may per-
ceive these tools as sufficient for their needs and become reluctant to
engage in security knowledge acquisition activities (Section “Knowl-
edge acquisition taxonomy”).

G20Z UDIBIN BZ UO [eSSY BleH Aq L2/ | 208/S005eAY L/| L/aIoie/A1un9as19GA9/woo°dno-olwapeoe//:sdny wouj papeojumoq

https://chatgpt.com/

Software security in practice

17

Moreover, developers’ increasing reliance on Al as a primary
source of development-related information [108] may lead to re-
duced communication between team members. This raises concerns
for software security as informal discussions within the workplace
create opportunities for developers to gain relevant security knowl-
edge (as discussed in the section “Internalizing software security”).
Organizations may thus need to focus on adopting and creating op-
portunities that foster communication between project team mem-
bers, such as mediated social contact activities or hosting CTFs.

Impact of Al on security motivation

Internalizing security (i.e. being internally motivated to adopt secu-
rity practices, cf. the section “Internalizing software security”) re-
quires sustained relatedness to the project team and its security goals.
As discussed above, developers’ increasing reliance on Al tools could
reduce opportunities for interaction between team members, which
would lower their sense of relatedness to their team. As the devel-
oper becomes disconnected from their team, it becomes harder for
her to value security or to view it as a shared responsibility, thus hin-
dering the internalization of software security. Overreliance on Al
tools could also lead to amotivation should the developer defer re-
sponsibility for software security to the Al tool. While Al tools come
with promises for improved software development processes, further
research is needed to fully understand their impact on security moti-
vations.

Integration within the taxonomy

Despite the potential shortcomings discussed above, developers may
use Al tools as a source for acquiring security knowledge. However,
until security considerations become a priority for such tools, devel-
opers need to thoroughly review the generated output to ensure the
information is reliable and secure [106,109]. For completeness, we
now discuss how using Al tools like ChatGPT could fit within our
taxonomy to allow for comparison with other knowledge acquisi-
tion activities (cf. the section “Practical use for the knowledge ac-
quisition taxonomy”). The cost for this activity varies based on the
type of the Al tool used ($-$3) . Learning is typically a byproduct
of the activity (B), and is integrated into the SDLC (%#). Expertise
is questionable due to potential inaccuracies () and the source of
information is external to the organization (#). In Table 2, this activ-
ity would be considered as a semi-formal learning opportunity, and
would be placed in either the Employer & Developer row if the usage
of Al tools is encouraged by the employer, or the Developer row if
the usage is purely the developer’s decision.

Conclusion

With an increasing number of security-sensitive software applica-
tions, it is essential for software developers to be aware of software
security and stay motivated in order to address security in their ap-
plications. In this paper, we explicate security knowledge acquisition,
developer motivation toward security and offer a framework for in-
ternalizing security. Our novel taxonomy can help practitioners rec-

ognize existing developer activities that may lead to advancing their
security knowledge. In addition, it could help employers explore dif-
ferent learning opportunities and decide on the best methods to pro-
mote security knowledge within their organization. We envision this
work to lead to increase in security awareness and in developers mo-
tivated toward improving the security of their software applications.

Author contributions

Hala Assal (Conceptualization, Formal analysis, Funding acquisition, Method-
ology, Supervision, Visualization, Writing—original draft, Writing-review &
editing), Srivathsan G. Morkonda (Visualization, Writing—original draft,
Writing-review & editing), Muhammad Zaid Arif (Writing-original draft,
Writing-review & editing), Sonia Chiasson (Conceptualization, Formal anal-
ysis, Funding acquisition, Methodology, Supervision, Writing-original draft,
Writing-review & editing)

Conflict of interest: There are no conflicts of interest.

Funding

H.A. acknowledges her NSERC Discovery Grant (RGPIN-2021-03808). S.C.
acknowledges NSERC for funding of an Arthur B. McDonald Fellowship
(SMFSA-566403-2022) and a Discovery Grant (RGPIN-2023-04653).

Appendix A: Interview script

The following questions represent the main themes discussed during the in-
terviews. We may have probed for more details depending on participants’

responses.

® What type of development do you do?

® What are your main priorities when doing development? (In order of pri-
ority)

® Do your priorities change when a deadline approaches?

® What about security? Is it something you worry about?

® Which are the best methods in your opinion for ensuring the security of
software applications?

® How does security fit in your priorities?

® Which resources do you use to gain security knowledge?

® Do you get training (formal, or self-learning) to gain better knowledge of
software security? How often?

® Which software security best practices are you familiar with?

Are there any obligations by your supervisor/employer for performing se-
curity testing?

What methods do you use to try to ensure the security of applications?
Do you perform testing on your (or someone else’s) applications/code?
Do you perform code reviews?

How would you describe the relation between the development and the
testing team?

® Can you think of a story of security issue that was frustrating and how
you dealt with it?

Appendix B: Distribution of participants’ security
learning opportunities

G20Z UDIBIN BZ UO [eSSY BleH Aq L2/ | 208/S005eAY L/| L/aIoie/A1un9as19GA9/woo°dno-olwapeoe//:sdny wouj papeojumoq

18

Assal et al.

Table B1. Distribution of participants mentioning learning opportunities fitting in each cell of the knowledge acquisition taxonomy.

Initiator Types of Learning
Formal Semi-formal Informal
Receiving in-context support
P1, P4, P6, P7,
Attending mandatory training P9, P10 Participating in
Employer P1. P2. P5 . . mediated social contact opportunities
Using CR as a learning tool o R e D
P1. P4 P6. P9 P2, P6, P7, P9,
’ ’ T P11, P10, P11
E
g Attending employer-sponsored talks o
E| Employer & P2, P3 Attending conferences Collaborating in the workplace
. i . 9 P3. P5. PC P1, P2, P3, P5,
g| Developer Referring to optional material P2, P3, P5, P9 P6. P7. PO '
= P1, P3, P9 R
Searching online]
Taking courses P3, P8, P9 Seeking help
Developer P4. P6. P9 i i i P1. P2. P4. P7.
T Reading information and)
. . . P8, P9, P10
discussion websites
P4, P7, P9, P10
Appendix C: Motivations and amotivations for
software security
Table C1. Motivations and amotivations of software security.
Code Description Example Quote
Amotivation - Felt lack of competence
Lack of resources The shortage in resources, e.g. budget ~ “We don’t have that much manpower to explicitly test security
and human power, needed to perform wvulnerabilities, [..] we don’t have those kind of resources. But ideally if we did
security tasks have [a big] company size, I would have a team dedicated to find exploits,
um, that sorta thing. But unfortunately we don’t.”
Lack of support The inadequate security tools and “We don’t have any formal process of like a code review, sitting down and
processes, or the lack thereof talking about security risks”

Not my responsibility

Amotivation - Lack of interest, relevance, value
Security is not part of my duties “Developers are similar to me, they don’t care that much about security or
it’s not part of their day to day job, therefore they don’t pay much attention
to the security aspect of the code.”

Security is handled elsewhere Security is another entity’s responsibility “I usually don’t as a developer go to the extreme of testing vulnerability in

Induced passiveness
No perceived loss

No perceived risk

Competing priorities

Inflexibility

my feature, that’s someone else’s to do.”

The surrounding environment causes “I don’t really trust them [my team members] to run any kind of like source
passiveness toward security code scanners or anything like that. I know I'm certainly not going to.”
The lack of competition, expected “I can introduce a big security issue and I definitely won’t be blamed that
repercussions, and loss much for it”

The company or application type is “For a small company, nobody will usually attack or compromise the
perceived as not a valuable target for vulnerabilities in your system. If something really bad happens, usually, you
attacks don’t really get enough [bad] reputation as well.”

Other tasks compete for resources and ~ “I have security issues that are frustrating, but I haven’t been able to deal
are prioritized over security with them yet. [...] It’s not something that we’ve been able to deal with yet,

just cause of priorities with everything else.”
Amotivation - Defiance/Resistance to influence
The resistance to new technology and ~ “[My team is| using a framework and these guys, they used the framework
being set in one’s way incorrectly, they didn’t like how certain part of this coding framework works
and has been designed, so they decided to do things completely different than
it [...] And [am sure it’s gonna result in a security risk down the line.”

G20Z UDIBIN BZ UO [eSSY BleH Aq L2/ | 208/S005eAY L/| L/aIoie/A1un9as19GA9/woo°dno-olwapeoe//:sdny wouj papeojumoq

Software security in practice

19

Table C1. Continued

Code Description Example Quote
Extrinsic Motivation - External
Audit fear The presence of an overseeing and “Ome of the main reasons that they did [address security] was audits. I think

Business loss

Pressure

Career advancement

Prestige

Understanding the
implications

Company reputation

Shared responsibility

Induced initiative

Professional responsibility

Concern for users

Self-improvement

supervising entity

Losses that a business can incur, e.g.
losing customers, due to security issues
Continuous pressure by superiors

Software security efforts and knowledge
move employees up in the hierarchy

they had to comply with certain security regulation standard, basically every
quarter or so they’re being checked for compliance, therefore they had the
make sure the auditors can’t find any issue during the penetration test.”

“We ended up ignoring security until we got a decent customer base where
we were actually concerned that if our product was compromised, we will
lose these customers.”

“If they find a security issue, then you will be in trouble. Everybody will be at
your back, and you have to fix it as soon as possible.”

“When it comes time to do promotions or move throughout the scales and
employment bands, the people with the higher knowledge on everything
move up and the people who don’t necessarily, like, didn’t take those security
training seriously, [...] they sort of stay in the same range.”

Extrinsic Motivation - Introjected

Acknowledgement and preserving
self-image

“Whenever somebody wants to find about you, then they go and check you in
the employee website. Then, when they click your name and check, it shows a
badge that you're security certified, which gives you a good feeling.”

Extrinsic Motivation - Identified

Recognizing and understanding the
potential implications of ignoring
security

The company and its employees care
about their reputation and how
customers perceive the company

The responsibility of software security
is shared among different teams within
the project team

Opportunities may exist that lead
developers to take the software security
initiative

“Just understanding the implications, I guess, of what could happen [would
motivate developers be more security-oriented]. | know for me personally
when I realized just how catastrophic something could be, just by making a
simple mistake, or not even a simple mistake, just overlooking something
simple. ubb it changes your focus.”

“We need to know safe secure coding techniques, we need to know what
paths the attackers might take, and have you fixed everything on your code
and your code doesn’t have any vulnerabilities. [...] because finally, it is going
to go under your logo.”

“[If we find a vulnerability,] we try not to say, *you personally are responsible
for causing this vulnerability’. [mean, it’s a team effort, people looked at that
code and they passed on it too, then it’s shared, really.”

“When you see your colleagues actually spending time on something, you
might think that ‘well, it’s something that’s worth spending time on’, but if
you worked in a company that nobody just touches security then you might
not be motivated that much.”

Extrinsic Motivation - Integrated

Feeling responsible as a professional

Caring about users’ privacy and security

“I would hesitate to release anything that’s not functional and I also hesitate
to release anything that had security concerns.”

“I would not feel comfortable with basically having something used by end
users that I didn’t feel was secure, or I didn’t feel respective of privacy, umm
so I would try very hard to not compromise on that.”

Intrinsic Motivation

The interest in, and self-satisfaction
from, improving one’s implementation

“And sometimes I will challenge [myself], that ‘okay, this time I'm going to
submit [my code] for a review where nobody will give me a comment’,
though that never happened, but still...”

REFERENCES

1.

Assal H, Chiasson S, Biddle R. Cesar: visual representation of source
code vulnerabilities. In: 2016 Symposium on Visualization for Cyber Se-
curity (VizSec), Baltimore, MD, USA: IEEE, 2016, 1-8.

Backes M, Rieck K, Skoruppa M,. et al. Efficient and flexible discovery
of PHP application vulnerabilities. In: 2017 European Symposium on
Security and Privacy (EuroS&P), Paris, France: IEEE, 2017, 334-49.
Chess B, McGraw G. Static analysis for security. IEEE Secur Priv
200452:76-9. https://doi.org/10.1109/MSP.2004.111

Smith J, Johnson B, Murphy-Hill E,. e al. Questions developers ask
while diagnosing potential security vulnerabilities with static analysis.
In: Proceedings of the 2015 10th Joint Meeting on Foundations of Soft-
ware Engineering. ESEC/FSE 2015. New York, NY: ACM, 2015, 248-
59.

Espinha Gasiba T, Lechner U, Pinto-Albuquerque M,. et al. Is secure

coding education in the industry needed? An investigation through a

large scale survey. In: 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Software Engineering Education and Training
(ICSE-SEET), Madrid: ES, 2021, 241-52.

6. Weir C, Becker I, Noble J,. et al. Interventions for long-term software
security: creating a lightweight program of assurance techniques for de-
velopers. Software Pract Exp 2020;50: 275-98. https://doi.org/10.1002/
spe.2774

7. Microsoft Corp. Microsoft Security Development Lifecycle. https://ww
w.microsoft.com/en-us/securityengineering/sdl/practices. (April 2024,
date last accessed).

8. Mandiant. Mandiant Unveils M-Trends 2023 Report, Delivering Critical
Threat Intelligence Directly from the Frontlines. 2023. https://www.ma
ndiant.com/company/press-releases/m-trends-2023. (June 2024, date
last accessed).

9. NIST. CVSS Severity Distribution Over Time. https://nvd.nist.gov/gener
al/visualizations/vulnerability-visualizations/cvss-severity-distribution-
over-time. (September 2024, date last accessed).

G20Z UDIBIN BZ UO [eSSY BleH Aq L2/ | 208/S005eAY L/| L/aIoie/A1un9as19GA9/woo°dno-olwapeoe//:sdny wouj papeojumoq

https://doi.org/10.1109/MSP.2004.111
https://doi.org/10.1002/spe.2774
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.mandiant.com/company/press-releases/m-trends-2023
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time

20

Assal et al.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Greenberg A. Hackers Remotely Kill a Jeep on the Highway—With Me
in It. 2015. https://www.wired.com/2015/07/hackers-remotely-kill-jeep
-highway/. (May 2017, date last accessed).

Gitlin JM. Hackers discover that vulnerabilities are rife in the auto in-
dustry. 2023. https://arstechnica.com/cars/2023/01/hackers-discover-th
at-vulnerabilities-are-rife-in-the-auto-industry/. (June 2024, date last
accessed).

Radcliffe J. Hacking Medical Devices for Fun and Insulin: Breaking
the Human SCADA System. 2011. https://media.blackhat.com/bh-us-1
1/Radcliffe/BH_US_11_Radcliffe_Hacking_Medical_Devices_ WP.pdf.
(February 2017, date last accessed].

Pance L. Hackers Turn Smart Fridges into Cryptocurrency Miners, Caus-
ing Global Kitchen Meltdown. 2024. https://techreport.com/news/hack
ers-turn-smart-fridges- mining-rigs/ (June 2024, date last accessed).
Blank R, Gallagher P. NIST Special Publication 800-30 Revision 1:
Guide for Conducting Risk Assessments. 2012. NIST Technical Series
Publication, https://csrc.nist.gov/pubs/sp/800/30/r1/final. (June 2024,
date last accessed].

Whitten A, Tygar JD. Why Johnny Can’t Encrypt: A Usability
Evaluation of PGP 5.0.In: USENIX Security Symposium. Vol. 348.
1999.

Acar Y, Fahl S, Mazurek ML. You are Not Your Developer, Either: A
Research Agenda for Usable Security and Privacy Research Beyond End
Users. In: 2016 Cybersecurity Development (SecDev), Boston, MA, USA:
IEEE, 2016, 3-8.

Green M, Smith M. Developers are Not the Enemy!: The Need for Us-
able Security APIs. IEEE Secur Priv 2016;14:40-6. https://doi.org/10.1
109/MSP.2016.111

Tahaei M, Vaniea K. A Survey on Developer-Centred Security. In:
2019 European Symposium on Security and Privacy Workshops (Eu-
roS&PW), Stockholm, Sweden: IEEE, 2019, 129-38.

Mokhberi A, Beznosov K. SoK: Human, Organizational, and Technolog-
ical Dimensions of Developers’ Challenges in Engineering Secure Soft-
ware. In: Proceedings of the 2021 European Symposium on Usable Se-
curity. New York, NY, USA: ACM, 59-75.

Witschey J, Xiao S, Murphy-Hill E. Technical and Personal Factors
Influencing Developers” Adoption of Security Tools. In: Proceedings of
the 2014 ACM Workshop on Security Information Workers, SIW *14.
New York, NY, USA: ACM, 2014, 23-26.

Xiao S, Witschey J, Murphy-Hill E. Social Influences on Secure Devel-
opment Tool Adoption: Why Security Tools Spread. In: Proceedings of
the 17th ACM Conference on Computer Supported Cooperative Work
and Social Computing, CSCW *14. New York, NY, USA. ACM, 2014,
1095-106.

Xie J, Lipford HR, Chu B. Why do programmers make security er-
rors? In: 2011 Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), Pittsburgh, PA: IEEE, 2011, 161-64.

Marshall BK. Passwords Found in the Wild for January 2013. http:/bl
og.passwordresearch.com/2013/02/. (April 2017, date last accessed).
Waurster G, van Oorschot PC. The Developer is the Enemy. In: Proceed-
ings of the 2008 New Security Paradigms Workshop, NSPW *08. New
York, NY: ACM, 2008, 89-97.

Votipka D, Fulton KR, Parker J,. et al. Understanding Security Mistakes
Developers Make: Qualitative Analysis from Build It, Break It, Fix It. In:
Proceedings of the 29th USENIX Conference on Security Symposium,
USENIX Association, 2020, 109-26.

Oliveira D, Rosenthal M, Morin N,. et al. It’s the Psychology Stupid:
How Heuristics Explain Software Vulnerabilities and How Priming Can
Illuminate Developer’s Blind Spots. In: Proceedings of the 30th Annual
Computer Security Applications Conference, ACSAC '14. New York,
NY: ACM, 2014, 296-305.

Baca D, Petersen K, Carlsson B,. et al. Static Code Analysis to De-
tect Software Security Vulnerabilities - Does Experience Matter?In:
2009 International Conference on Availability, Reliability and Security,
Fukuoka, Japan: IEEE, 2009, 804-10.

Assal H, Chiasson S. Security in the Software Development Lifecycle. In:
Fourteenth Symposium on Usable Privacy and Security (SOUPS 2018).
Baltimore, MD: USENIX Association, 2018.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Assal H, Chiasson S. Motivations and Amotivations for Software Se-
curity. In: SOUPS Workshop on Security Information Workers (WSIW).
Baltimore, MD: USENIX Association, 2018.

Lopez T, Tun TT, Bandara AK,. et al. Taking the Middle Path: Learn-
ing About Security Through Online Social Interaction. IEEE Software
20205;37:25-30. https://doi.org/10.1109/MS.2019.2945300

Braz L, Bacchelli A. Software Security during Modern Code Review:
The Developer’s Perspective. In: Proceedings of the 30th ACM Joint Eu-
ropean Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering, ESEC/FSE 2022. New York, NY: ACM
2022, 810-21.

Engestrom Y. Learning by expanding. Center for Activity Theory and
Developmental Work Research.Orienta-konsultit 1987.

Engestrom Y, Miettinen R, Punamiki RL. Perspectives on Activity The-
ory. Cambridge: Cambridge University Press, 1999.

Kuutti K. Activity theory as a potential framework for human-computer
interaction research. Context and Consciousness: Activity Theory and
Human-Computer Interaction 1996;17-44

Engestrom Y. Expansive Learning at Work: Toward an activity theo-
retical reconceptualization. Journal Educ Work 2001;14:133-56. https:
//doi.org/10.1080/13639080020028747

O’Connor K. In: Activity Theory. John Wiley and Sons, 2015. https:
/lonlinelibrary.wiley.com/doi/abs/10.1002/9781118611463.wbielsi188.
Deci E, Ryan RM. Intrinsic Motivation and Self-Determination in Hu-
man Behavior. US: Springer, 1985.

Ryan RM, Deci EL. Self-determination theory and the facilitation of
intrinsic motivation, social development, and well-being. Am Psychol
20005;55:68. https://doi.org/10.1037/0003-066X.55.1.68

Ryan RM, Deci EL. Self-determination theory: Basic psychological
needs in motivation, development, and wellness. New York, NY: Guil-
ford Publications, 2017.

Vallerand R]J,
tional Styles as Predictors of Behavior: A Prospective Study. | Pers
1992;60:599-620. https://doi.org/10.1111/j.1467-6494.1992.tb00922
X

Fulton KR, Votipka D, Abrokwa D,. et al. Understanding the How
and the Why: Exploring Secure Development Practices through a Course
Competition. In: Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security. New York, NY: ACM, 2022.
Lipner S. The Trustworthy Computing Security Development Lifecy-
cle. In: 20th Annual Computer Security Applications Conference. IEEE,
2004, 2-13.

Fulton KR, Chan A, Votipka D,. et al. Benefits and Drawbacks of
Adopting a Secure Programming Language: Rust as a Case Study. In:
Proceedings of the Seventeenth USENIX Conference on Usable Privacy
and Security, SOUPS’21. USENIX Association, 2021.

Braz L, Aeberhard C, Calikli G,. et al. Less is More: Supporting Devel-
opers in Vulnerability Detection during Code Review. In: Proceedings of

Blssonnette R. Intrinsic, Extrinsic, and Amotiva-

the 44th International Conference on Software Engineering, ICSE "22.
New York, NY: ACM, 2022, 1317-29.

Danilova A, Naiakshina A, Rasgauski A,. et al. Code Reviewing as
Methodology for Online Security Studies with Developers: A Case Study
with Freelancers on Password Storage. In: Proceedings of the Seven-
teenth USENIX Conference on Usable Privacy and Security, SOUPS’21.
USENIX Association, 2021.

Naiakshina A, Danilova A, Gerlitz E,. et al. “If you want, I can store the
encrypted password”: A Password-Storage Field Study with Freelance
Developers. In: Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems, CHI "19. New York, NY: ACM, 2019,
1-12.

van der Linden D, Anthonysamy P, Nuseibeh B,. et al. Schrodinger’s
Security: Opening the Box on App Developers’ Security Rationale. In:
2020 IEEE/ACM 42nd International Conference on Software Engineer-
ing (ICSE). New York, NY: ACM, 2020.

Haney JM, Lutters WG. Skills and Characteristics of Successful Cy-
bersecurity Advocates. In: Workshop on Security Information Workers,
Symposium on Usable Privacy and Security (SOUPS). Santa Clara, CA:
USENIX Association, 2017.

G20Z UDIBIN BZ UO [eSSY BleH Aq L2/ | 208/S005eAY L/| L/aIoie/A1un9as19GA9/woo°dno-olwapeoe//:sdny wouj papeojumoq

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://arstechnica.com/cars/2023/01/hackers-discover-that-vulnerabilities-are-rife-in-the-auto-industry/
https://media.blackhat.com/bh-us-11/Radcliffe/BH_US_11_Radcliffe_Hacking_Medical_Devices_WP.pdf
https://techreport.com/news/hackers-turn-smart-fridges-mining-rigs/
https://csrc.nist.gov/pubs/sp/800/30/r1/final
https://doi.org/10.1109/MSP.2016.111
http://blog.passwordresearch.com/2013/02/
https://doi.org/10.1109/MS.2019.2945300
https://doi.org/10.1080/13639080020028747
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118611463.wbielsi188
https://doi.org/10.1037/0003-066X.55.1.68
https://doi.org/10.1111/j.1467-6494.1992.tb00922.x

Software security in practice

21

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Nurgalieva L, Frik A, Doherty G. A Narrative Review of Factors Af-
fecting the Implementation of Privacy and Security Practices in Software
Development. ACM Comput Surv 2023;55:1-27. https://doi.org/10.114
5/3589951

Kathrin Bednar SS, Langheinrich M. Engineering Privacy by Design: Are
engineers ready to live up to the challenge? Inform Soc 2019;35:122-42.
https://doi.org/10.1080/01972243.2019.1583296

Ryan I, Roedig U, Stol KJ. Understanding Developer Secu-
rity Archetypes. In: 2021 IEEE/ACM 2nd International Workshop
on Engineering and Cybersecurity of Critical Systems (EnCyCriS),
Madrid, Spain, 2021, 37-40.

Spiekermann S, Korunovska J, Langheinrich M. Inside the Organiza-
tion: Why Privacy and Security Engineering Is a Challenge for Engineers.
Proc IEEE, 2019;107:600-15. https://doi.org/10.1109/JPROC.2018.2
866769

Danilova A, Naiakshina A, Smith M. One Size Does Not Fit All: A
Grounded Theory and Online Survey Study of Developer Preferences
for Security Warning Types. In: Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, ICSE °20. 2020,
136-48.

Tahaei M, Vaniea K, Beznosov K,. et al. Security Notifications in Static
Analysis Tools: Developers™ Attitudes, Comprehension, and Ability to
Act on Them. In: Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems, CHI "21, New York, NY: ACM, 2021.
Acar Y, Backes M, Fahl S,. et al. Comparing the Usability of Crypto-
graphic APIs. In: 2017 IEEE Symposium on Security and Privacy (SP),
San Jose, CA, USA, 2017, 154-71.

Oyetoyan TD, Cruzes DS, Jaatun MG. An Empirical Study on the Rela-
tionship between Software Security Skills, Usage and Training Needs in
Agile Settings. In: 2016 11th International Conference on Availability,
Reliability and Security (ARES), Salzburg, Austria: IEEE, 2016.
Tuladhar A, Lende D, Ligatti J,. et al. An Analysis of the Role of Situ-
ated Learning in Starting a Security Culture in a Software Company. In:
Proceedings of the Seventeenth USENIX Conference on Usable Privacy
and Security, SOUPS’21. USENIX Association, 2021.

Stack Overflow - Where Developers Learn, Share, and Build Careers.
https://stackoverflow.com. (January 2018, date last accessed].

Fischer F, Bottinger K, Xiao H,. et al. Stack Overflow Considered Harm-
ful? The Impact of Copy&Paste on Android Application Security. In:
2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA,
2017, 121-36.

Acar Y, Backes M, Fahl S,. et al. You Get Where You’re Looking for:
The Impact of Information Sources on Code Security. In: 2016 IEEE
Symposium on Security and Privacy (SP), San Jose, CA, USA, 2016, 289-
305.

Diaz Ferreyra NE, Vidoni M, Heisel M,. et al. Cybersecurity Discussions
in Stack Overflow: A Developer-Centred Analysis of Engagement and
Self-Disclosure Behaviour. Soc Netw Anal Mining 2024;14:16.
Horvath A, Liu MX, Hendriksen R,. et al. Understanding How Pro-
grammers Can Use Annotations on Documentation. In: Proceedings of
the 2022 CHI Conference on Human Factors in Computing Systems,
CHI °22. New York, NY: ACM, 2022.

Arab M, LaToza TD, Liang J,. et al. An Exploratory Study of Shar-
ing Strategic Programming Knowledge. In: Proceedings of the 2022
CHI Conference on Human Factors in Computing Systems, CHI 22.
New York, NY: ACM, 2022.

Pieczul O, Foley S, Zurko ME. Developer-centered Security and
the Symmetry of Ignorance. In: Proceedings of the 2017 New Secu-
rity Paradigms Workshop, NSPW 2017. New York, NY: ACM, 2017,
46-56.

Poller A, Kocksch L, Tiirpe S,. et al. Can Security Become a Routine?:
A Study of Organizational Change in an Agile Software Development
Group. In: Proceedings of the 2017 ACM Conference on Computer Sup-
ported Cooperative Work and Social Computing, CSCW °17. New York,
NY: ACM, 2017, 2489-503.

Woon IMY, Kankanhalli A. Investigation of IS professionals’ intention
to practise secure development of applications. Int] Hum-Comput Stud
2007;65:29-41. https://doi.org/10.1016/j.ijhcs.2006.08.003

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

Weir C, Hermann B, Fahl S. From Needs to Actions to Secure Apps?
The Effect of Requirements and Developer Practices on App Security. In:
Proceedings of the 29th USENIX Conference on Security Symposium.
USENIX Association, 2020.

Thomas TW, Tabassum M, Chu B,. et al. Security During Application
Development: An Application Security Expert Perspective. In: Proceed-
ings of the 2018 CHI Conference on Human Factors in Computing Sys-
tems, CHI "18. New York, NY: ACM, 2018, 262:1-262:12.

Lopez T, Sharp H, Tun T,. et al. Talking About Security with Profes-
sional Developers. In: 2019 IEEE/ACM Joint 7th International Work-
shop on Conducting Empirical Studies in Industry (CESI) and 6th In-
ternational Workshop on Software Engineering Research and Industrial
Practice (SERSTP). 2019, 34-40.

Gasiba T, Lechner U, Pinto-Albuquerque M. ”CyberSecurity Chal-
lenges for Software Developer Awareness Training in Industrial Environ-
ments”. In: Innovation Through Information Systems. 2021, 370-87.
Gorski PL, Acar Y, Lo lacono L,. et al. Listen to Developers! A Partic-
ipatory Design Study on Security Warnings for Cryptographic APIs. In:
Proceedings of the 2020 CHI Conference on Human Factors in Com-
puting Systems, CHI °20. New York, NY: ACM, 2020, 1-13.

Ford D, Zimmermann T, Bird C,. et al. Characterizing Software Engi-
neering Work with Personas Based on Knowledge Worker Actions. In:
2017 ACM/IEEE International Symposium on Empirical Software En-
gineering and Measurement (ESEM), Toronto, ON, Canada, 2017, 394-
403.

Glaser BG, Strauss AL. The discovery of grounded theory: strategies for
qualitative research. Aldine, 1967.

Forward A, Lethbridge TC. A Taxonomy of Software Types to Facili-
tate Search and Evidence-based Software Engineering. In: Proceedings of
the 2008 Conference of the Center for Advanced Studies on Collabora-
tive Research: Meeting of Minds, CASCON °08. New York, NY: ACM,
2008, 179-91.

Strauss AL, Corbin JM. Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory. Sage Publications, Inc.,
1998.

Organisation for Economic Co-operation and Development (OECD).
Recognition of Non-formal and Informal Learning - Home.
http://www.oecd.org/edu/skills-beyond-school/recognitionofnon-forma
landinformallearning-home.htm. (January 2018, date last accessed).
Dib CZ. Formal, non-formal and informal education: con-
cepts/applicability. AIP Conf Proc 1988;173:300-15. https:
/Idoi.org/10.1063/1.37526

Eraut M. Non-formal learning and tacit knowledge in professional work.
Brit] Educ Psychol 2000;70:113-36. https://doi.org/10.1348/00070990
0158001

Eshach H. Bridging In-school and Out-of-school Learning: Formal, Non-
Formal, and Informal Education. | Sci Educ Technol 2007;16:171-90.
https://doi.org/10.1007/s10956-006-9027-1

Stahl G. Conceptualizing the Intersubjective Group. Int] Comput Supp
Collab Learn. 2015;10:209-17. https://doi.org/10.1007/s11412-015-9
220-4

NIST. National Vulnerability Database. https://nvd.nist.gov. (March
2017, date last accessed).

CVE - Common Vulnerability Exposures. https://cve.mitre.org. (January
2018, date last accessed).

Rhee HS, Ryu YU, Kim CT. Unrealistic optimism on information se-
curity management. Comput Secur 2012;31:221-32. https://doi.org/10
.1016/j.cose.2011.12.001

OWASP. Cross Site Scripting (XSS). https://owasp.org/www-communit
y/attacks/xss/. (July 2024, date last accessed).

Howard M, Lipner S. The security development lifecycle: SDL, a process
for developing demonstrably more secure software, Redmond, Wash:
Microsoft Press, 2006.

Sophy J. 43 Percent of Cyber Attacks Target Small Business. 2016.
https://smallbiztrends.com/2016/04/cyber-attacks- target-small-busine
ss.html. (February 2017, date last accessed).

Nafees T, Coull N, Ferguson I,. et al. Vulnerability Anti-Patterns: A
Timeless Way to Capture Poor Software Practices (Vulnerabilities). In:

G20Z UDIBIN BZ UO [eSSY BleH Aq L2/ | 208/S005eAY L/| L/aIoie/A1un9as19GA9/woo°dno-olwapeoe//:sdny wouj papeojumoq

https://doi.org/10.1145/3589951
https://doi.org/10.1080/01972243.2019.1583296
https://doi.org/10.1109/JPROC.2018.2866769
https://stackoverflow.com
https://doi.org/10.1016/j.ijhcs.2006.08.003
http://www.oecd.org/edu/skills-beyond-school/recognitionofnon-formalandinformallearning-home.htm
https://doi.org/10.1063/1.37526
https://doi.org/10.1348/000709900158001
https://doi.org/10.1007/s10956-006-9027-1
https://doi.org/10.1007/s11412-015-9220-4
https://nvd.nist.gov
https://cve.mitre.org
https://doi.org/10.1016/j.cose.2011.12.001
https://owasp.org/www-community/attacks/xss/
https://smallbiztrends.com/2016/04/cyber-attacks-target-small-business.html

22

Assal et al.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

Pattern Languages of Programs Conference. USA: The Hillside Group,
2017.

Nafees T, Coull N, Ferguson RI,. et al. Idea-Caution Before Exploita-
tion: The Use of Cybersecurity Domain Knowledge to Educate Soft-
ware Engineers Against Software Vulnerabilities. In: Bodden E, Payer
M, Athanasopoulos E, (eds.). Engineering Secure Software and Systems.
Cham: Springer International Publishing, 2017, 133-42.

Fischer F, Bottinger K, Xiao H,. et al. Stack Overflow Considered Harm-
ful? The Impact of Copy Paste on Android Application Security. In: 2017
IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 2017,
121-36.

van Zadelhoff M. Cybersecurity Has a Serious Talent Shortage. Here’s
How to Fix It. https://hbr.org/2017/05/cybersecurity-has-a-serious-tale
nt-shortage-heres-how-to-fix-it. (January 2018, date last accessed).
OWASP. OWASP CTF Project. https://www.owasp.org/index.php/Cate
gory:OWASP_CTF_Project. (January 2018, date last accessed].
Harmon TD. Cyber Security Capture The Flag (CTF): What
Is It?. https://blogs.cisco.com/perspectives/cyber-security-capture-the-
flag-ctf-what-is-it. (January 2018, date last accessed).

CTFtime. CTF? WTF? https:/ctftime.org/ctf-wtf/. (January 2018, date
last accessed).

Gagné M, Deci EL. Self-determination theory and work motivation. |
Organ Behav 2005;26:331-62. https://doi.org/10.1002/job.322

Bear GG, Slaughter JC, Mantz LS,. et al. Rewards, praise, and puni-
tive consequences: Relations with intrinsic and extrinsic motivation.
Teach Teach Educ 2017;65:10-20. https://doi.org/10.1016/j.tate.2017.
03.001

Selart M, Nordstrom T, Kuvaas B,. et al. Effects of Reward on
Self-regulation, Intrinsic Motivation and Creativity. Scand | Educ Res
2008;52:439-58. https://doi.org/10.1080/00313830802346314

Shani 1, Staff GitHub. Survey reveals AD's impact on the devel-
oper experience. 2023. https:/github.blog/2023-06-13-survey-reveal
s-ais-impact-on-the-developer-experience/. (August 2024, date last
accessed).

Overflow S. 2024 Developer Survey. https://survey.stackoverflow.co/202
4. (August 2024, date last accessed).

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

Tubino L, Adachi C. Developing feedback literacy capabilities through
an ai automated feedback tool. Ascilite Publ 2022; €22039. https://doi.
org/10.14742/apubs.2022.39

Schulte-Althoff M. What’s to Automate? A Task Analysis of Al-enabled
Start-ups. Proc 56th Hawaii Int Conf System Sci 2023.

Perry N, Srivastava M, Kumar D,. et al. Do Users Write More Inse-
cure Code with Al Assistants?In: Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security, CCS "23. New
York, N'Y: ACM, 2023, 2785-99.

Raphael Khoury and Anderson R. Avila and Jacob Brunelle and Baba
Mamadou Camara. How Secure is Code Generated by ChatGPT? 2023.
https://arxiv.org/pdf/2304.09655.

Pearce H, Ahmad B, Tan B,. et al. Asleep at the Keyboard? Assessing
the Security of GitHub Copilot’s Code Contributions. In: 2022 IEEE
Symposium on Security and Privacy (SP),2022, San Francisco, CA, USA,
754-68.

Negri-Ribalta C, Geraud-Stewart R, Sergeeva A,. et al. A systematic
literature review on the impact of Al models on the security of code
generation. Front Big Data 2024;7.

OWASP. LLM Top 10 for LLMs v1.1. 2024. https://genai.owasp.org/re
source/llm-top-10-for-1lms-v1-1/.

Klemmer JH, Horstmann SA, Patnaik N,. et al. Using Al Assistants in
Software Development: A Qualitative Study on Security Practices and
ConcernsIn: Proceedings of the 2024 on ACM SIGSAC Conference on
Computer and Communications Security, Salt Lake City, UT, USA, 2024.
Mastropaolo A, Pascarella L, Guglielmi E,. et al. On the Robustness of
Code Generation Techniques: An Empirical Study on GitHub Copilot.
In: Proceedings of the 45th International Conference on Software Engi-
neering, ICSE 23, Melbourne, Victoria, Australia: IEEE,2023,2149-60.
Vizard M. Survey Surfaces Widespread Reliance on Generative
Al Among Developers. 2024. https://devops.com/survey-surfaces
-widespread-reliance-on-generative-ai-among-developers/. (Au-
gust 2024, date last accessed).

Silva CAGd, Felipe NR, Rafael VAM,. et al. ChatGPT: Challenges and
Benefits in Software Programming for Higher Education. Sustainability
2024;16:1-23.

© The Author(s) 2025. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial
License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is

properly cited. For commercial re-use, please contact journals.permissions@oup.com

G20Z UDIBIN BZ UO [eSSY BleH Aq L2/ | 208/S005eAY L/| L/aIoie/A1un9as19GA9/woo°dno-olwapeoe//:sdny wouj papeojumoq

https://hbr.org/2017/05/cybersecurity-has-a-serious-talent-shortage-heres-how-to-fix-it
https://www.owasp.org/index.php/Category:OWASP_CTF_Project
https://blogs.cisco.com/perspectives/cyber-security-capture-the-flag-ctf-what-is-it
https://ctftime.org/ctf-wtf/
https://doi.org/10.1002/job.322
https://doi.org/10.1016/j.tate.2017.03.001
https://doi.org/10.1080/00313830802346314
https://github.blog/2023-06-13-survey-reveals-ais-impact-on-the-developer-experience/
https://survey.stackoverflow.co/2024
https://doi.org/10.14742/apubs.2022.39
https://arxiv.org/pdf/2304.09655
https://genai.owasp.org/resource/llm-top-10-for-llms-v1-1/
https://devops.com/survey-surfaces-widespread-reliance-on-generative-ai-among-developers/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:journals.permissions@oup.com

	Introduction
	Related work and background
	Study design and methodology
	Knowledge acquisition taxonomy
	Motivation for software security
	Internalizing software security
	Limitations and future work
	Discussion and conclusion
	Author contributions
	Funding
	Appendix A: Interview script
	Appendix B: Distribution of participants’ security learning opportunities
	Appendix C: Motivations and amotivations for software security
	REFERENCES

