
Journal of Cybersecurity , 2025, tyaf005
https://doi.org/10.1093/cybsec/tyaf005

Research Paper

Software security in practice: knowledge and

motivation

Hala Assal 1 , * , Srivathsan G. Morkonda

2 , Muhammad Zaid Arif 2 ,
Sonia Chiasson

2

1 Department of Systems and Computer Engineering, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
2 School of Computer Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada

∗Corresponding author. Department of Systems and Computer Engineering, Carleton University, 1125 Colonel By Drive,
Ottawa, ON, K1S 5B6, Canada. E-mail: Hala.Assal@carleton.ca

Received 7 October 2024; revised 12 December 2024; accepted 14 February 2025

Abstract

Developing secure software remains a challenge for developers despite the availability of security resources and
secure development tools. Common factors affecting software security include the developer’s security awareness
and the rationales behind their development decisions with respect to security. In this work, we conducted inter-
views with software developers to examine how developers in organizations acquire security knowledge, and what
factors motivate or prevent developers from adopting software security practices. Our analysis reveals that devel-
opers’ security knowledge and motivations are intertwined aspects that are both important for promoting security in
development teams. We identified a variety of learning opportunities used by developers and employers for increas-
ing security awareness, including in-context learning activities preferred by developers. Based on our application of
the self-determination theory, better security outcomes are expected when developers are internally driven toward
security, rather than motivated by external factors; this aligns with our interpretation of participants’ descriptions
relating to security outcomes within their teams. Based on our analysis, we provide ideas on how to motivate devel-
opers to internalize security and improve their security practices.

Keywords: usable security; software security; software developers; interview; security knowledge; security motivation

I

S

w

c

t

(

t

n

v

i

d

c

b

c

i

a

m

m

s

c

o

u

n

p

o

v

e

r

P

h

[

p

h

©
A
m

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf005/8071721 by H

ala Assal on 29 M
arch 2025
ntroduction

oftware developers are not necessarily security experts, yet they are
idely held responsible for developing secure applications. Many se-

urity initiatives and tools have been proposed to support the in-
egration of security in the Software Development Lifecycle (SDLC)
e.g.[1–7]). Despite these efforts, vulnerabilities persist [8 ,9] and with
he proliferation of software in all aspects of our lives, security vul-
erabilities can have a devastating impact on users’ livelihood (e.g.
ulnerabilities in cars [10 ,11], in medical wearable devices [12], or
n home appliances [13]). Formally, a software vulnerability can be
efined as “a weakness in an information system, system security pro-
edure, internal control, or implementation that could be exploited
y a threat source.” [14]. Vulnerabilities could be unintentional or
ould be introduced to a system by a malicious developer; the latter
s out of the scope of this paper.

Many reasons have been suggested for the prevalence of vulner-
bilities. For example, a common problem for security is the the un-
The Author(s) 2025. Published by Oxford University Press. This is an Open Access article
ttribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), wh
edium, provided the original work is properly cited. For commercial re-use, please contac
otivated user property [15], where security is generally not a pri-
ary goal for users; this concept also applies to software developers

ince security is rarely their primary objective [16–19]. While secure
oding guidelines could be useful, developers are generally unaware
f such guidelines [5], or are not mandated by their companies to
se them [20–22]. Besides, developers might lack security knowledge
ecessary to prevent vulnerabilities [23–25]. And even when they do
ossess some security knowledge, developers may lack the ability [26]
r expertise [25 ,27] to apply this knowledge to identify and address
ulnerabilities in their applications. In this context, security knowl-
dge refers to information that increases developers’ software secu-
ity awareness, and helps them avoid, identify, or fix security issues.
revious usable security research has focused on developers and the
uman factors of software security [16–19]. For example, Acar et al.
 16] developed a research agenda that focuses on proposing and im-
roving security tools and methodologies, as well as understanding
ow developers view and deal with software security.
1 distributed under the terms of the Creative Commons
ich permits non-commercial re-use, distribution, and reproduction in any
t journals.permissions@oup.com

https://doi.org/10.1093/cybsec/tyaf005
https://orcid.org/0000-0002-3306-0558
http://orcid.org/0009-0005-2218-1935
mailto:Hala.Assal@carleton.ca
https://creativecommons.org/licenses/by-nc/4.0/
mailto:journals.permissions@oup.com

2 Assal et al.

Figure 1. Third generation activity theory with two interacting activity systems [35].

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf005/8071721 by H

ala Assal on 29 M
arch 2025
We conducted an interview study with professional software de-
velopers. In an accompanying paper [28], we analyzed a portion of
this data to explore real-life software security practices and identified
factors that may influence these practices. In this current paper, we
address different research questions and analyze the full dataset using
the Grounded Theory methodology. Herein, we focus on how devel-
opers learn about security, and factors that motivate (or deter) devel-
opers from addressing software security. We presented early discus-
sion about the motivations and amotivations related to software se-
curity at the 2018 SOUPS Workshop on Security Information Work-
ers [29]). In this paper, we pursue the following research questions:

RQ1: How do developers acquire knowledge relating to software
security?

RQ2: What are developers’ motivations towards adopting soft-
ware security practices?

Initially, we set out to explore developers’ knowledge of software
security and how they acquire this knowledge (RQ 1). However, dur-
ing preliminary data analysis, we found that even those with the nec-
essary security knowledge may lack motivation to adopt software se-
curity practices. This led us to explore the second research question
(RQ 2).

Through this work, we identify opportunities and strategies for
acquiring security knowledge (Section “Knowledge acquisition tax-
onomy”), and explore factors influencing developers’ motivation to-
ward adopting security practices (Section “Motivation for software
security”). Our data analysis also revealed that security knowledge
and motivation are two intertwined aspects that may influence se-
curity practices; motivation in itself is not enough if the developer
lacks security knowledge and, as it turns out, security knowledge it-
self affects motivation. In addition, we found several factors that may
induce developers’ amotivation (i.e. lack of drive to engage) toward
security, despite their security knowledge and belief of its importance.
Thus, besides offering technical support for developers with security
tools and libraries, our data shows the importance of having devel-
opers internalize software security practices and act with volition to-
ward it (Section “Internalizing software security”).

Related work and background

Developers may recognise the need for integrating security within
the SDLC [30], yet they may be unable to follow security practices
due to insufficient security knowledge or due to workplace factors
such as a lack of security culture [28 ,31]. In this paper, we focus on
how software developers gain security knowledge, as well as their
motivations toward adopting software security practices.

We begin this section by providing a brief background on two
theories that we use to explain the results (in sections “Knowledge
acquisition taxonomy” and “Motivation for software security”), fol-
lowed by a review of existing literature on factors affecting secure
software development practices.

Theoretical background on activity theory

In the section “Multiple activity systems interacting within project
teams,” we use Activity Theory [32 ,33] to describe the interactions
between the different teams working on developing a software prod-
uct, their often conflicting objectives and perspectives, and how these
multiple perspectives can enhance/impede the security of their soft-
ware. Here, we provide a brief primer on Activity Theory.

Activity theory [32 ,33] can be defined as “a philosophical and
cross-disciplinary framew or k for studying different forms of hu-
man practices as development processes, with both individual and
social levels interlinked at the same time ” [34]. Engeström pro-
posed the “activity system model” [33 ,34] that describes a three-way
relationship between a subject (e.g. a developer), their object (e.g. de-
veloping software) and their community (e.g. a development team).

The “third generation of activity theory” expands the original
theory by considering two activity systems as the minimal unit of
analysis [35]. It aims to understand discussions, perspectives, and in-
teractions between multiple activity systems. Of particular relevance
to this paper is the principle of multi-voicedness [35]. Rather than a
homogeneous system, activity theory views an activity system as con-
sisting of multiple perspectives, traditions, and interests [35 ,36]. This
multi-voicedness is magnified when multiple activity systems interact
as it brings multiple viewpoints closer.

As will be discussed in the section “Multiple activity systems in-
teracting within project teams,” in software development organiza-
tions, the development activity can be considered as one activity sys-
tem while the security testing activity is a second independent activ-
ity system (Fig. 1). Each activity system involves different objectives,
priorities (e.g. functionality for developers, and security for security
testers), and perspectives.

Theoretical background on Self-Determination Theory

In the section “Motivation for software security,” we use the Self-
Determination Theory (SDT) to explain what motivates developers

S oftw are security in practice 3

a

s

v

t

c

t

B

d

t

t

c

p

s

t

[

f

v

t

f

t

c

a

a

n

d

d

t

t

c

t

a

b

l

M

d

t

i

r

t

s

t

a

i

b

S

S
S

t

C

e

p

c

o

a

i

p

s

e

i

S

p

i

d

b

z

B

o

a

l

d

fi

s

t

[

c

e

p

[

e

i

t

t

F
O

a

m

t

w

[

k

n

R

s

w

c

d

c

A

c

t

m

p

m

l

n

w

c

w

S

S
P

s

c

s

t

t

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf005/8071721 by H

ala Assal on 29 M
arch 2025
nd their teams to address software security, as well as explain rea-
ons for lacking software security motivation.

SDT [37 ,38] is a cognitive framework for studying human moti-
ation in learning environments such as classrooms and organiza-
ions. SDT identified distinct types of motivation, each with clear
onsequences on an individual’s potential to thrive [39] in relation
o learning, performance, personal experience, or well-being [38].
ehaviors are “autonomously” motivated when they are fully self-
etermined, whereas “controlled” behaviors are those driven by ex-
ernal or internal pressures or an obligation to act [38 ,39]; in our con-
ext, a developer who performs security activities out of self-interest
haracterizes fully autonomous behavior, whereas a developer who
erforms security activities only to comply with regulations repre-
ents controlled behavior. SDT uses the autonomy-control continuum
o differentiate types of motivation with respect to their regulation
 39], as described next (and later depicted in the section “Motivation
or software security,” Fig. 4).

Amotivation (at the far left of this continuum) is the lack of moti-
ation to act, where the person does not act at all or acts without in-
ent [38]. Amotivation has three forms. The first form is when people
eel they cannot effectively achieve the desired outcome, e.g. because
hey are not competent to do it [38–40], such as when they lack se-
urity knowledge. The second form of amotivation occurs when the
ction lacks interest, relevance, or value to the person [38–40], such
s when they do not perceive security to be their responsibility. Fi-
ally, the third form is when amotivation to a behavior is actually a
efiance and motivation to oppose said behavior [39]. For example, a
eveloper refuses to use a security tool because it requires modifying
heir existing workflows.

To the right of amotivation, the continuum presents the different
ypes of motivations based on the actor’s degree of autonomy when
arrying out the activity; we describe these motivations in the con-
ext of software security practices. External regulation is the least
utonomous and most external to the developer (e.g. motivated only
y fear of losing business opportunities), whereas introjected regu-
ation refers to motivations that result from self-pressure and ego.

ore autonomously, identified regulation occurs when the developer
eems security as personally important. Integrated regulation is when
he developer fully accepts the goal of the activity and acts toward
t with volition (e.g. to protect users’ privacy and security). On the
ightmost end of the spectrum, the most autonomous is intrinsic mo-
ivation , where security activities are performed purely for the plea-
ure and satisfaction that result from the challenge they present to
he developer. SDT suggests that more autonomous motivation styles
re associated with positive outcomes, such as increased engagement,
mproved performance, encouraging creativity, more cognitive flexi-
ility, and better learning [38 ,40].

 ecure softw are development practices

ecurity within the SDLC

ecurity best practices recommend integrating security throughout
he SDLC and starting from the early stages [28 , 41 , 42]. Assal and
hiasson [28] discuss practical strategies for integrating security in
ach stage of the SDLC, e.g. by identifying security requirements and
erforming threat modeling in the design stage, and integrating se-
urity in the post-development testing stage. The authors also point
ut the importance of considering security of third-party libraries
nd monitoring for vulnerabilities [28]. When security is a prior-
ty, it should influence decisions throughout the SDLC. For exam-
le, developers could consider more secure programming languages
uch as Rust that prevent certain classes of vulnerabilities [43]. How-
ver, previous work suggests that security tends to be considered only
n certain development stages rather than integrated throughout the
DLC. Assal and Chiasson [28] found that development teams often
rioritize security only in the latter stages of the SDLC such as dur-

ng code reviews and post-development testing. They also found that
eviation from security best practices (e.g. the principle of security-
y-design) are influenced by workplace factors such as the organi-
ation’s development hierarchy, and developers’ security knowledge.
raz and Bacchelli [31] examined code review practices in specific
rganizations, and found that security considerations were largely
bsent during code reviews. They suggested that developers might be
acking motivation to consider security during code reviews because
evelopers had insufficient security knowledge or because of insuf-
cient employer-driven security training. Many studies about secure
oftware development (e.g. [44–46]) have found that developers need
o be explicitly reminded to consider security. For example, Braz et al.
 44] suggested that simply prompting code reviewers to focus on se-
urity can increase detection of vulnerabilities. Interestingly, develop-
rs may also inadvertently (and possibly unknowingly) follow secure
ractices as an unintentional by-product of completing other tasks
 47] but this haphazard approach is clearly unreliable. In summary,
xisting research has focused on how security practices are included
n the SDLC; our work extends the literature by exploring what mo-
ivates developers with respect to software security, and identifies ac-
ivities that can help improve developers’ security knowledge.

actors influencing adoption of secure development solutions
ther research has focused on understanding factors influencing the

doption of available tools that support secure software develop-
ent. Besides developers’ security expertise and skills [28 ,48], adop-

ion tends to be impacted by the organization’s overall culture to-
ard security and by the context of the application being developed

 21 , 22 , 49–51]. For example, developers (even those with security
nowledge) may lack resources or the autonomy within their orga-
ization to improve their applications’ security and privacy [50 ,52].
elatedly, Danilova et al. [53] found that when security tools (e.g.

tatic analysis tools) are incompatible with developers’ preferences,
orkflows, or their roles within the organizations, the developers per-

eive the security warnings from these tools as unuseful. However,
evelopers tend to be more receptive when the security warnings in-
lude code examples for vulnerabilities and solutions [54]. Similarly,
car et al. [55] suggested that including working code samples and
omprehensive Application Programming Interface (API) documen-
ation would improve the adoption of cryptographic APIs and lead to
ore secure code. Fulton et al. [43] found that although developers
erceived positive security benefits from the memory-safe program-
ing language Rust, they were reluctant to adopt it due to its steep

earning curve. These findings suggest that security adoption depends
ot only on developers’ security knowledge or their willingness to-
ard security but also on organizational norms and usability of se-

urity tools. Thus, it is important to consider these diverse factors
hen encouraging security adoption.

ecurity knowledge and skills

ources of security knowledge
revious research has explored the impact of specific knowledge
ources used by developers for learning about software security in-
luding online developer forums and code documentation. Having
ecurity knowledge is often a key driver of security-related activi-
ies in development teams [56 ,57], but the quality of the informa-
ion source can significantly impact whether developers succeed at

4 Assal et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf005/8071721 by H

ala Assal on 29 M
arch 2025
producing secure code. Developers tend to depend heavily on the
online Question and Answer developer-focused forum Stack Over-
flow [58] as an easy-to-use programming resource, however, it often
leads to insecure code [59 ,60]. A comparative study by Acar et al.
[60] on Android application development found that relying on of-
ficial Android documentation and textbooks led developers to pro-
duce more secure code while developers relying on Stack Overflow

produced more functional but less secure code. Sadly, many security-
related posts on Stack Overflow tend to remain unanswered or have
answers that are not “accepted” (i.e. not marked as satisfactory by
the user asking the question) [61], raising doubts about the efficacy
of such forums for software security. Developers also rely on col-
leagues as sources of security knowledge. Through an ethnographic
study, Tuladhar et al. [57] observed that developers acquire security
knowledge when collaborating with other developers on the specific
applications they develop. These studies show that developers rely on
the knowledge resources that are available to them which may be of
varying quality and may not necessarily align with security best prac-
tices. In the section “Knowledge acquisition taxonomy,” we discuss
security knowledge acquisition activities in detail.

Security awareness among developers
Other works have focused on understanding and improving devel-
opers’ security awareness. Gasiba et al. [5] found that developers are
generally not aware of secure coding guidelines, which aim to pro-
mote security knowledge. Votipka et al. [25] found that the lack of
security knowledge was a primary contributor to the introduction
of vulnerabilities regardless of development experience. In addition,
even when developers are aware of security concepts, they may not
know how to apply the concepts correctly in order to achieve the
intended security goals [25]. Lopez et al. [30] suggested a different
view that developers do possess basic security knowledge but they
lack control of development activities that provide opportunities to
extend their security knowledge. They recommended that develop-
ers combine online discussions about security on sites such as Stack
Overflow with social interactions about security in their development
teams to extend security knowledge and promote a security culture
within the organization. There also exist studies that focused on im-
proving developers’ programming knowledge in general (i.e. not spe-
cific to security), for example, using “in-context” code annotations
[62] or using dedicated knowledge-sharing platforms [63]; similar
approaches could potentially also help improve developers’ security
knowledge but this has not yet been explored. Beyond those discussed
above, our work identifies additional security knowledge sources and
development activities that help increase developers’ security knowl-
edge, and proposes an overall taxonomy allowing for comparison.

Developer challenges and moti vator s

Challenges faced by developers
Building secure software is challenging, especially when develop-
ers without adequate security knowledge are expected to implement
code that might affect the security of the software [17 ,60]. Mokhberi
and Beznosov [19] reviewed previous studies focused on the chal-
lenges faced by developers in secure software development and sug-
gested that organizational and human factors tend to have a larger
impact than technological factors, e.g. developers favor security tool
adoption when supported by a manager who prioritizes security and
by an organization that provides access to security resources. Tahaei
and Vaniea [18] surveyed existing literature on “developer-centered
security” (a secure software development approach with emphasis
on the needs of developers [64]) and discussed the importance of
workplace context and organizational incentives when considering
developers’ security needs. A common challenge highlighted by both
surveys relates to security often being considered a secondary func-
tion which causes developers to sacrifice security for other functional
requirements [18 ,19]. Poller et al. [65] found that developers may
be reluctant to change their security practices due to various orga-
nizational factors such as existing development procedures and as-
signed roles. These studies show that barriers to secure development
practices are much more nuanced than simply a lack of usable se-
curity tools and that several important socio-organizational factors
also need to be considered.

Understanding developer motivations
In an early study on security motivations within organizations, Woon
and Kankanhalli [66] found that developers’ intentions to perform

security actions were aligned with the developers having positive atti-
tudes and perceptions of the usefulness of security. More recent work
on identifying developers’ security motivations have focused on in-
dependent app developers. For example, Van der Linden et al. [47]
examined the relationships between mobile app developers’ security
rationale and their security behavior, and observed that app develop-
ers were particularly concerned about security in specific scenarios
such as when collecting personal data of users or when storing pass-
word hashes. Weir et al. [67] found that Android app developers tend
to perform security-enhancing activities when they perceive a need
for security and when they also have access to security experts. Ryan
et al. [51] characterized developers into four security archetypes that
explain developers’ security behaviors. The authors suggested that
developers’ security behavior is primarily influenced by self-interest
and environmental support. Through our interviews and data anal-
ysis herein, we found additional factors that fit into a wide spectrum

of motivators and amotivators described in the section “Motivation
for software security.” While there has been a considerable focus on
the challenges faced by independent developers, there has been little
focus on understanding what motivates or demotivates developers
with respect to security within organizational contexts. Our study
begins to fill this research gap.

Interventions for motivating developers
Other work has proposed interventions to motivate developers to-
ward adopting security practices, including on-the-job training ac-
tivities [5 , 6 , 68], cybersecurity games [69 , 70] and in-context educa-
tion [26 ,68]. Weir et al. [6] demonstrated that a series of low-cost
facilitated workshops can motivate developers to adopt effective se-
curity practices. Relatedly, Lopez et al. [69] designed guidelines for
engaging with developers about security; they recommended using
scenario-based games and workshops to motivate discussions about
security. Gasiba et al. [5] suggested various training activities within
development teams in order to raise awareness about secure coding
guidelines. They also designed a cybersecurity game [70] targeted to
developers in industrial environments. To support developers in the
correct use of cryptographic APIs, Gorski et al. [71] proposed de-
signing security warnings using concise messages and including code
examples for different use cases. Thomas et al. [68] recommended
tailoring training activities to focus on the specific types of security
issues developers are likely to encounter in their code, and to ad-
dress developers’ weakness in security knowledge. Ford et al. [72]
recommended matching development tasks based on developer per-
sonalities, which may also be useful for security-related tasks. The
variety of interventions considered in these studies suggest that there
is no one-size-fits-all solution. In this paper, we take a more holistic
view by describing a number of activities organizations can adopt

S oftw are security in practice 5

Table 1. Participant demographics.

Participant Company and team

ID Gender Age Years Title SK Company size Team size

P1 F 30 1 Software engineer 4 Large enterprise 20
P2 M 34 15 Software engineer 5 Large enterprise 12
P3 M 33 10 Software engineer 4 Large enterprise 10
P4 M 38 21 Software developer 4 SME 7
P5 M 34 12 Product manager 5 Large enterprise 7
P6 F 26 3 Software engineering analyst 3 Large enterprise 12
P7 M 33 4 Senior web engineer 4 SME 3
P8 M 34 5 Software developer 3 Large enterprise 20
P9 M 33 8 Software engineer 2 SME 5
P10 M 37 20 Principal software engineer 5 SME 10
P11 M 38 15 Senior software developer 2 SME 8
P12 M 26 3 Software developer 2 SME 4
P13 F 27 5 Junior software developer 4 Large enterprise 7

Years: years of experience in development.
SK: self-rating of security knowledge 1 (no knowledge) to 5 (expert). SME: Small–medium enterprise.

b

a

S

I

o

I

W

v

d

w

t

c

a

a

g

q

c

v

a

o

a

s

G

p

P

O

t

p

s

u

u

p

a

b

w

n

s

b

u

a

(

d

f

p

D

W

t

d

c

c

s

w

d

s

t

W

q

m

o

w

l

c

a

w

k

i

c

t

p

h

i

c

i

i

l

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf005/8071721 by H

ala Assal on 29 M
arch 2025
ased on their needs and constraints to promote security-enhancing
ctivities.

tudy design and methodology

n this section, we present the study design, data analysis methodol-
gy, participant demographics, and study limitations.

nterview study design

e designed and conducted an IRB-approved semi-structured inter-
iew study with professional software developers. The interview ad-
ressed five main topics: general development activities, attitude to-
ard security, security knowledge, security processes, and software

esting activities (see Appendix A for the interview script). We re-
ruited participants through posts on software development forums
nd relevant social media groups, as well as through announcements
mong professional contacts. Participants received a $20 Amazon
ift card as compensation. Participants completed a demographics
uestionnaire before their one-on-one interviews. Interviews were
onducted in-person (n = 3) or remotely, e.g. through phone calls or
ideoconferencing (n = 10), lasted approximately one hour, and were
udio recorded and later transcribed for analysis. A total of 3 waves
f data collection took place, each followed by preliminary analysis
nd preliminary conclusions [73]. We concluded recruitment upon
aturation (i.e. when new data did not provide more insights) as per
laser and Strauss’s [73] recommendation. In total, we recruited 13
rofessional software developers for our study.

articipant demographics

ur 13 participants answered our interview questions in the con-
ext of 15 companies; two participants reflected on their current and
revious companies. We did not have multiple participants from the
ame company. Participants self-identified their roles and the prod-
cts with which they are involved. We then classified their responses
sing Forward and Lethbridge’s [74] software taxonomy. Partici-
ants in our dataset worked on various types of applications: web
pplications and services like e-finance, online productivity, online
ooking, website content management, and social networking, as
ell as software like embedded software, kernels, design and engi-
eering software, support utilities, and information management and
upport systems. The organizations mentioned in the dataset were all
ased in North America. All participants included in the study hold
niversity degrees, have had courses in software programming, and
re employed as developers with an average of 9.35 years experience
 Md = 8). The recruitment did not prioritize any specific software
evelopment methodology. Participants reported following a Water-
all model or variations of the Agile methodology. See Table 1 for
articipant demographics.

ata analysis approach

e used Strauss and Corbin’s Grounded Theory methodology [75]
o analyze our interviews. Our analysis took into consideration the
ifferent stages of the SDLC, and how security was (or was not) in-
luded in each stage. For example, during our analysis of participants’
ode review processes, we paid particular attention to whether/how
ecurity was addressed during these reviews. This included, analyzing
hether security was prioritized during the reviews or if it was ad-
ressed in an ad-hoc manner, the reviewers’ security expertise, how
ecurity considerations were raised and addressed, and how recep-
ive different team members were to discussing and addressing .0s.

e performed open-coding through examining the answer to each
uestion in the interview script and assigning codes describing the
ain themes or ideas discussed. The main researcher performed the
pen-coding, however, codes were discussed with a second researcher
henever a new code was created. Open coding was done using At-

as.ti (https:// atlasti.com/ interview- analysis- tools) on 600 unique ex-
erpts and resulted in a total of 170 open codes. We italicize and use
 different font for our codes when reporting.

For example, “Learning from peers ” is an open code that
e created when participants indicated that they acquire security
nowledge through interaction with their colleagues. In the follow-

ng quote, P8 explains how all his security knowledge came from
olleagues in the company where he works. He said, “I guess up un-
il now, any knowledge I have got of [software security] has just been
urely from peers, or anytime we bring in a new employee and they
ave more knowledge about it. That’s where I kinda learn it from. ”

Following open coding, we performed axial coding by look-
ng for patterns, relationships, and connections between the open
odes. We wrote each of the codes on a Post-It note, grouped sim-
lar ones, and looked for relationships, such as categorical or causal-
ty relationships. Even though this process was possible using At-
as.ti, we preferred using Post-It notes to allow us to be more im-

https://atlasti.com/interview-analysis-tools

6 Assal et al.

Figure 2. Axial coding process. Left: first round of axial coding, right: looking for relationships and connections.

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf005/8071721 by H

ala Assal on 29 M
arch 2025
mersed in the data, have an overview of the codes and categories,
and have the ability to move them around as needed, as shown in
Fig. 2 .

The last step in coding was selective coding, where we worked
toward integrating and refining the categories, and identifying a core
category that represents the overall theme of the research [75]. To
achieve this, we examined the categories, while referring back to the
interview scripts (raw data), abstracting the main issue and asking
ourselves: “what comes through although it might not be said di-
rectly? ” [75].

Through being immersed in the data and as the analysis contin-
ued, a core category relating to the concept of internalizing and ac-
cepting security activities and behaviors began to emerge. We will
discuss this further in the section “Internalizing software security.”

Knowledge acquisition taxonomy

Through our analysis of the interview data, we identified different op-
portunities for acquiring and sharing security knowledge. We found
that these opportunities can be grouped based on distinct character-
istics (discussed below), which we organize into a taxonomy. In Ta-
ble 2 , we present the knowledge acquisition taxonomy: a taxonomy
of the activities described by our participants that we have identified
as opportunities for knowledge acquisition. We represent the type
of learning associated with the activity horizontally across the table,
and the initiator of the activity (i.e. the initiator of the learning op-
portunity) vertically.

Types of learning

We classified the learning opportunities identified in our data ac-
cording to their level of formality. “Formal” learning is always or-
ganized and structured, has learning objectives, and is always inten-
tional from the learner’s perspective [76–79]. Conversely, “informal”
learning is neither organized nor structured, does not have specific
objectives, and happens as a by-product of other activities [76 , 77 , 79].
“Semi-formal” learning opportunities identified in our data fall
between these two, where learning lacks one or more aspects of for-
mal learning while being more organized and structured than infor-
mal learning [76 , 77 , 79].

Activity initiator

This is the entity with the motivation to start the activity, thus the
security learning opportunity. This can be the employer (e.g. when
the employer organizes mandatory activities that the developer at-
tends for compliance), or the developers (i.e. in activities that the de-
veloper is self-motivated to initiate without direct encouragement or
mandate). Some activities are initiated by both the employer and the
developer, e.g. optional activities the employer sets up in which de-
velopers can choose to participate, even though they would not have
initiated the activity on their own. Thus, activity initiation is along an
employ er—dev eloper spectrum, where initiation tends to be more in-
ternal to, and self-motivated by, the developer as we move toward the
developer end of the spectrum. We note that developers disinterested
in security may still perform activities in the taxonomy’s third row

(i.e. developer-initiated activities) as part of completing job-related
tasks; however, our analysis shows that they are likely to procrasti-
nate with respect to these activities. We discuss developer motivations
in more detail in the section “Motivation for software security.”

Features

We have identified five different features for each learning opportu-
nity/activity.

� Relative cost ($, $$) . The symbol $ indicates that the activity is
relatively low cost and $$ indicates higher cost. Obviously, the
cost one company finds reasonable may be expensive for another.

S oftw are security in practice 7

Table 2. Knowledge acquisition taxonomy. The taxonomy presents security knowledge acquisition opportunities and features associated

with each opportunity. See inline for their description.

$ - lower cost; $$ - higher cost.
E - learning is the developer’s explicit objective; B - learning is a by-product of another activity.

- high subject-matter expertise (lower expertise when grayed out).
- activity is part of the SDLC (not part of the SDLC when grayed out).
- knowledge source is external to the company (source is internal when grayed out).

d

t

a

n

t

c

a

F

F

(

f

a

(

A
T

i

o

s

t

i

p

r

t

p

h

i

t

k

a

i

b

t

u

d

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf005/8071721 by H

ala Assal on 29 M
arch 2025
Thus, this characteristic should be used to compare activities
relative to each other, rather than, e.g. finding the most reason-
ably priced activity.

� Fit in the developer’s objective (E , B). We use E to indicate
that learning is the developer’s explicit objective for the activ-
ity, whereas B indicates that learning is a by-product of another
activity.

� Source expertise (). A indicates that the source of informa-
tion has high subject-matter expertise. It is grayed-out () when
the source of information varies in their level of expertise. Note
that advancement in knowledge can occur through discussions
and sharing of interpretations, even if the teacher does not have
higher expertise than the learner [80].

� Fit in the SDLC (). A indicates that the activity is performed
as part of the developer’s tasks (thus part of the SDLC). It is
grayed-out () when the activity is not part of the SDLC.

� Knowledge source (). A indicates that knowledge is flowing
to the company from external sources. It is grayed-out () when
knowledge is shared within the company.

We built this taxonomy based on our analysis of the interview
ata. Though other activities may exist that are not included in the
axonomy, the taxonomy allows for exploring and reasoning about
ctivities that induce learning in the context of software security. We
ext describe and provide context for each activity presented in the
axonomy. Table B1 in Appendix B shows which participants dis-
ussed each activity categorized in the taxonomy; it highlights that
ll opportunities were discussed by multiple individuals.
ormal learning

or all formal learning opportunities identified, learning is explicit
 E) from the developer’s perspective. In addition, the source of in-
ormation, be it an instructor in a training session or an author of
 training manual, is assumed to have high subject-matter expertise
).

ttending mandatory training ($$E)
his formal learning refers to one-time or regularly scheduled train-

ng activities that employers require developers to complete as part
f their job. Formal security training is usually expected as the first
tep for a secure SDLC [7]. Most participants mentioned that they at-
ended mandatory security training when they started their job but,
n most cases, the training focused on general security topics (e.g.
asswords and phishing), and on best practices while using company
esources or sharing company code. Three participants reported at-
ending mandatory on-boarding training that explicitly included as-
ects of software security. In addition to attendance, P1 mentioned
er company requiring that developers successfully pass exams relat-

ng to the training topics.
Beyond initial mandatory training, P5’s company also requires at-

endance at regularly scheduled training sessions. P5 explains, “We
ept doing [mandatory training], and it’s been quite effective. So as
 result of it being effectiv e, w e scaled down the frequency at which
t needs to be done. But it’s not because it’s less important, it’s just
ecause people started to get it more.” Linking training frequency
o security outcomes could lead developers to find the training more
seful and be more attentive to it. The rationale may be that when
evelopers are more attentive, they can spend less time on additional

8 Assal et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf005/8071721 by H

ala Assal on 29 M
arch 2025
training and they can get go back to their development work more
quickly. In the section “Internalizing software security,” we discuss
how valuing security can impact developers’ performance and pro-
mote software security.

Attending emplo y er-sponsored talks ($E)
Our data analysis shows that employer-sponsored talks are typically
technical and have specific learning objectives (e.g. introducing a new

security API). This type of learning opportunity is initiated by both
the employer (for hosting the talk) and the developer (for deciding to
attend). These talks are usually given by employees sharing expertise
with colleagues, thus knowledge sources are internal to the company.
P3 mentioned that his company sometimes invites external experts as
well.

Referring to optional material ($E)
Some companies provide optional security knowledge resources (e.g.
reading material, or video lectures) prepared by in-house experts;
similar to the employer-sponsored talks above, these activities are
initiated by both the employer (for offering the material) and the de-
veloper (for seeking the material). P3 explained, “they do have an
infrastructure, so that people can easily find actual courses taught by
colleagues at this v ery institution. [...] They hav e a series of sort of
self seminars, so these are like slideshows or online videos that we
can look at.” P1 mentioned that their material is accompanied by
an assessment test that allows the developer to self-test their knowl-
edge and the company to recognize the developer’s level of security
knowledge.

Taking courses ($-$$E)
Some participants explained that they took courses or even acquired
a graduate degree to increase or maintain their security knowledge.
Their companies did not require or even encourage them to do so,
thus the initiation of this learning opportunity is internal to the de-
veloper. P11 explained, “For me, I like taking courses [...] I mean [...]
something [that] shows me all the types of vulnerabilities I need to re-
ally be thinking about when I am w or king on my applications.” The
cost of this activity varies; an online course is likely less expensive
than an on-site course, and both are less expensive than a graduate
degree. Knowledge here is flowing to the company from an external
source (the institute offering the course or graduate degree).

Semi-formal learning

The semi-formal learning opportunities listed here vary in their de-
gree of structure, the presence of learning goals, and the experience
of the information source. Learning may be the developer’s explicit
objective (E) or a by-product (B) of development activities.

Receiving in-context support ($B)
Some participants mentioned learning about security through differ-
ent forms of in-context support received while working on their tasks
(). Thus, learning from these activities is a by-product (B) of the de-
velopment task. For example, participants discussed that if a security
tester identifies an issue in their code, the tester would then provide
the developer with the specific steps to follow to reproduce the issue,
as well as an explanation of the issue and possible fixes. One partic-
ipant also mentioned that his company pairs developers with more
senior colleagues to disseminate security knowledge across the devel-
opment team. P9 explained that the intention is “to make sure that
the junior [developer] doesn’t feel, you know, like they are left alone
on the issue or they are frustrated or stuc k. [They] hav e somebody to
kinda guide them through the w or k that they are doing step by step.”
On the other hand, P9’s previous company took this even further and
formed a “security council” from in-house experts to provide security
guidance. The council keeps developers updated on relevant issues to
consider during implementation, and developers are expected to con-
sult this council, e.g. when they need advice. P9 explained, “If there is
anything that we flag up as ‘ok this might have security implications’,
then it goes to them to say ‘ok, do you guys find anything? [Do] you
have any comments on the design? Is there anything maybe we didn’t
think of?’ ”

Using CR as a learning tool ($B)
Code review is a typical SDLC step where implemented code is in-
spected by reviewers (possibly including the author of the code); these
reviewers typically involve developers, but can also involve testers, se-
curity experts, and other project team members. During code review,
the reviewers collectively aim to find or address code issues, which
is typically primarily focused on functionality issues, but can also
address security bugs [28]. Similar to the in-context learning activi-
ties described above, code reviews allow developers to gain security
knowledge while working on their tasks (), and security learning
is a by-product (B) of the development task. P1 explained that upon
finding a security issue, reviewers take this opportunity to teach the
developer about its implications and how to fix it. This can happen
face-to-face or through documented code review feedback. She said,
“[Review er s] just come right away to your cubicle and explain [to]
you [...] because they feel [that] going and taking a book and read-
ing it would be, mmm, so much painful. So, they just come over to
you and draw on the board and explain what you did and what you
should not do.” In some cases, the reviewer is not necessarily more
experienced than the developer , however , the discussion that arises
during the review session can lead to better insights on code security.
P1 also mentioned that junior developers can act as mock review-
ers to learn about the process and types of issues to avoid in their
code. One of the factors to rate the success of a code review session
discussed by participants is by determining whether the review re-
sulted in information sharing among reviewers and developers. P5
explained, “A good review is one where the development team gets
a better understanding of the security of the application, and the se-
curity team gets a better understanding of how applications are con-
structed and how to interact with the development teams.”

Attending conferences ($-$$E)
Some participants mentioned that they sometimes attend academic
conferences to keep up with new technologies and new security at-
tacks and defences. There is no mandate from their employers to at-
tend such events, although it is encouraged. Employers may reim-
burse their developers for conference registration fees and/or other
expenses. P11 explained, “they do offer umm, they will pay for us to
g o. Lik e if y ou want g o to a conference that’s, y ou know, in town,
the y’ll pa y for the fee to go to the conference.”

Thus, attending conferences is an activity initiated by developers
and encouraged by employers, where learning is an explicit goal (E).
Conference presenters are often considered subject-matter experts
(), and likely external to the company (). The cost of this activity
varies depending on the conference registration fees, and whether it
includes travel and accommodation expenses.

Searching online ($B)
Several online resources are available to help developers in their job-
related tasks, however such resources vary in structure and credibil-
ity. These range from personal blogs and knowledge markets (e.g.

S oftw are security in practice 9

S

n

(

t

s

a

a

I

t

i

r

R
T

l

d

a

a

a

p

u

s

t

o

t

i

t

a

I

I

e

o

P
S

g

t

m

b

w

c

s

w

t

a

C
W

t

s

t

i

a

p

w

w

c

g

t

d

c

t

c

fi

t

i

t

j

[

s

(

a

t

p

S
P

t

t

c

t

d

e

u

y

a

t

t

n

s

t

o

[

f

l

[

f

t

F

i

e

m

i

t

e

u

c

a

M

I

o

t

t

b

e

t

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf005/8071721 by H

ala Assal on 29 M
arch 2025
tack Overflow [58]), to more official resources [e.g. National Vul-
erability Database [81] and Common Vulnerabilities and Exposures
CVEs) [82]). We found that when participants use online resources
o fix a security issue, this helps them learn about that particular
ecurity issue while working on their task. Thus, learning from this
ctivity is considered part of the SDLC () and is a by-product of the
ctivity (B). P3 explained, “frankly, you know, Google search engine.
 basically search things online. So, when there’s something particular
hat I need to look into, I basically look it up online and see what the
nternet says.” He also explained that he would prefer using “official
esources or more reputable sources ,” rather than a blog.

eading information and discussion websites ($E)
his activity involves the same resources as in the Searching On-
ine activity described above. However, we categorize this into a
istinct activity as participants’ motives for accessing these resources
re different. Contrary to Searching Online , participants in this
ctivity access the internet resources with the explicit goal of learning
bout security. Thus, learning in this activity is explicit (E) and not
art of the SDLC ().

Participants explained that they use internet resources to stay
p-to-date on security vulnerabilities. For example, P9 explained his
trategy, “[I follow a] couple of blogs, just general websites as well
hat might point out some new vulnerability. If I want to go in depth
n something, then, you know, we can read about its CVE for that
hing.” Our participants’ recounts of their use of discussion websites
ndicates that they did not actively participate in discussions, rather
hey were passive learners reading about the security topic and the
vailable discussion.

nformal learning

nformal learning activities identified herein fall under “learning by
xperience” [76]. For all these activities, learning is a by-product (B)
f the development tasks performed as part of the SDLC ().

articipating in mediated social contact opportunities ($B)
ome participants gained security knowledge while participating in
roup activities enabled by their employers. For example, some par-
icipants mentioned that they discuss work impediments during team
eetings, including security issues they face and how these could
e addressed. Others mentioned that they work in open-plan offices
hich often stimulates discussions. P10 said, “We all sit relatively

lose together, so if someone finds something, they might just sort of
a y ‘OK, does an y one know about this?’ ‘Why are w e doing it this
ay?’ ” P10 explained that they value these general discussions as

hey allow developers to stay informed about security vulnerabilities
nd prevent vulnerabilities in their code.

ollaborating in the workplace ($B)
e found that participants learned about security during collabora-

ions with members of other teams through interactions and discus-
ions between teams. In our interviews, participants described mul-
iple instances of different teams working together, e.g. testers work-
ng with developers to better understand the purpose of the code,
nd thus being able to better analyze potential vulnerabilities. P2 ex-
lained, “Usually, if [the testers] think there’s a problem, they really
 ouldn’t g o ahead and publish the bug like this; they would work
ith us. They’d be like, ‘do I understand this correctly? Is this the

orrect behaviour?’ [...] So, it’s a process before the bug actually
ets submitted.” Such collaboration with other teams provides mu-
ual benefits; it allows for “information sharing ” (P11) between the
ifferent teams, can help bridge the knowledge gap [68], and reduce
onflicts. Conversely, poor communication and a disconnect between
eams who are working together leads to tension; this can result in
onflicts between the teams and poor security outcomes. P8 exempli-
es this through his development team’s frustration with the testing
eam, “[The relationship between the testing and development team
s] bad. [c huc kles] I mean, usually, you just pass them the code and
hen, they run through test cases and, you know, if they fail, they’ll
ust come back say ‘fail’. And then they don’t..., because people who
are] doing the testing, they have zero knowledge about the code it-
elf.” Such disconnect may be due to conflicting goals between teams
e.g. functionality for developers, and security for security testers),
nd may require building a shared sense of responsibility between
he teams. The section “Multiple activity systems interacting within
roject teams” discusses workplace collaborations in more detail.

eeking help ($B)
articipants also described multiple instances where they turned to
heir colleagues for help. This is different from Collaborating in
he Workplace , as help seeking here is informal and random, oc-
urring only when the developer needs help while working on their
asks, rather than, e.g. a follow-up on testing results. In addition, the
eveloper seeking help is usually the main beneficiary of the knowl-
dge shared. P4 explained, “if I need advice from someone, I would
sually ask, you know; ‘I’m looking at this thing here, how would
 ou g o with doing it?’ We kind of just talk back and forth, it’s usu-
lly pretty free form and open.”Our participants also mentioned that
hey sometimes seek help to answer more specific questions relating
o specific security issues. For example, P1 explained that if she can-
ot fix a security issue in her code, she asks a teammate who faced a
imilar issue how they fixed it. Although this activity is initiated by
he developer, it is sometimes performed even by unmotivated devel-
pers albeit after procrastinating. P2 explained, “In my experience
some devs] would delay [asking for help]. They’d w or k on things
or months and then over coffee they’d be telling me what they’re
ooking at and I’d break it in 2 minutes [...]. And they would be like
c huc kle] ‘okay, let’s do this again’.”

In summary, all the activities (Formal, Semi-Formal, and In-
ormal) discussed herein improve developers’ security knowledge,
hough participants’ favored in-context learning activities (Semi-
ormal and Informal). In-context learning may be preferable since

t fits within developers’ existing objectives, thus allowing develop-
rs to learn about security while working on their routine develop-
ent tasks. In other words, casual and social exchanges of security

nformation during regular work activities are more meaningful, and
he encouragement of a culture of security knowledge sharing is ben-
ficial. Participants also found (Formal) security training activities
seful, however it is important to adapt the frequency of training ac-
ording to the needs of the trainees and to incorporate the training
ctivities into their regular workload.

otivation for software security

n this section, we focus on RQ2 , specifically what motivates devel-
pers to adopt or forgo security practices and tasks.

Through our analysis (see Fig. 3), we identified different motiva-
ions to adopt software security practices, as well as several factors
hat may induce developers’ amotivation despite their knowledge and
elief of the importance of security. Classifying the motivations as
ither intrinsic or extrinsic was too simplistic (e.g. the extrinsic mo-
ivations we identified varied in their driving forces from an external

10 Assal et al.

Figure 3. Analyzing motivations and amotivations for software security. Left: looking for patterns, right: identified patterns in amotivation.

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf005/8071721 by H

ala Assal on 29 M
arch 2025
mandate to the developer’s sense of responsibility), thus we use SDT’s
autonomy-control continuum [37 ,39] to present our results. This
continuum, explained in the section “Theoretical background on
Self-Determination Theory,” describes human motivation in learn-
ing environments using motivators ranging from extrinsic forces (e.g.
compliance to external requirements) to intrinsic forces (e.g. self-
interest). Table C1 in Appendix C, presents qualitative analysis codes
corresponding to the software security (a)motivations found in our
data, explains each code, and presents a corresponding sample quo-
tation.

Figure 4 presents (a)motivations identified in our study on the
self-determination continuum. At the leftmost end of the continuum

(colored orange), we present amotivations that led participants (or
their teams) to neglect software security. To the right, we present
software security motivations. As we move toward the right, activity
regulation increases in autonomy. Motivations under “external regu-
lation” and “introjected regulation” are colored separately (yellow),
because these motivations are not truly internalized (i.e. these mo-
tivations do not come from within the actor) and are contingent on
their perceived outcomes (e.g. they are performed to comply with reg-
ulations or to maintain self-esteem). Motivations under “identified
regulation” and “integrated regulation” (light blue) are more inter-
nally driven, and along with “intrinsic motivation” (dark blue), they
present the most favorable types of software security motivations.

Note that security practice herein refers to practices developers
can do to address security in their code, which may differ from secu-
rity best practices such as performing static analysis or threat model-
ing [28]. We focus on these practices since our goal is to understand
developers’ security motivations (i.e. willingness to address security
issues) rather than compare with best practices.
Amotivation

Through our data analysis, we identified three main reasons for par-
ticipants’ neglect of software security.

Amoti vation—percei ved lack of competence
Our analysis revealed that a lack of resources and a lack of
support are two factors that led to a perceived lack of competence
to address software security. Some participants indicated that their
teams do not have the necessary budget, time, people-power, or exper-
tise, to properly address security in their SDLC. We also found that
this lack of trust in their ability to address security occurs when teams
do not have a security plan in place, when security tools are nonexis-
tent or lacking, and when developers are unaware of the availability
of such tools. For example, P4 said, “I wish I knew of [security] tools,
but unfortunately I don’t really know of any tool. So, I would prob-
ably be happy to say I would like to use some tools, but I don’t know

of any. I kinda wish I did, but I don’ t. ”

Amotivation—lack of interest, relevance, or value
This type of amotivation comes from the lack of interest, relevance,
or perceived value of performing security tasks. The lack of relevance
happens when security is not considered to be one of the developer’s
everyday duties (not my responsibility), or when security is
viewed as another entity’s responsibility (security is handled
elsewhere), such as by another team or team member. Our analysis
shows that when this is the general attitude within a team, it can have
detrimental effects such as induced passiveness . It could lead
developers (even those who believe in the importance of addressing
security) to become demotivated toward security and rather focus on
their ‘more valuable’ existing duties. For example, P9 said, “I don’t

S oftw are security in practice 11

Figure 4. The self-determination continuum of software security. Amotivations (orange) are presented at the leftmost end of the continuum (problematic for

security). Towards the right, motivations are presented in increasing order of activity regulation (better for security). In the middle, extrinsic motivations are

shown in two different blocks to highlight the externally driven motivations (yellow) and the internally driven motivations (light blue). Intrinsic motivations, at

the rightmost end (blue), are always internally driven and are more favorable for security.

r

s

f

t

t

o

t

v

c

b

w

s

c

e

f

w

s

c

o
M

o

v

A
T

t

c

p

p

i
w

t

i

E

E
O

s

e

s

t

c

b

o

t

s

s

a

t

[

c

d

[

n

t

t

I
A

v

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf005/8071721 by H

ala Assal on 29 M
arch 2025
eall y trust [m y team members] to run an y kind of like source code
canners or anything like that. I know I’m certainly not going to.”

Additionally, our analysis shows different reasons why security ef-
orts lack value for some participants in our dataset. First, we found
hat some participants are influenced by the optimistic bias [83],
hinking that attackers would not be interested in their applications,
r that they are not in an organization big enough to be a target for at-
acks. Thus, as they see no perceived risk , security efforts lack
alue. P7 said, “For a small company, nobody will usually attack or
ompromise the vulnerabilities in your system. If something really
ad happens, usually, you don’t really get enough [bad] reputation as
ell.” We also found that when there are no perceived negative con-

equences to the individuals or to the business from the lack of se-
urity (no perceived loss), then security efforts lack value. For
xample, when developers are not held responsible for security issues
ound in their code, they would rather spend their time on aspects for
hich they will be held responsible. P7 explained, “[If] I made a bad

ecurity decision, nobody would blame me as much as if I made a de-
ision that [led] to a [functionality] bug in the system. So the priority
f security is definitely lower than introducing bugs in the system.”
oreover, as different tasks compete for resources (e.g. the devel-

per’s time in the previous quote), when security has no perceived
alue, those tasks deemed more valuable are prioritized.

motivation—defiance/resistance to influence
he final amotivation we identified is inflexibility . We found

hat some developers ignored security, not because it is difficult to
omply, but rather because it conflicts with their perception of the
roper way of coding, or their personal coding practices. P9 ex-
lained how one of his team members resists using a framework

n the proper way, despite having “gotten into so many arguments ”
ith his manager, “I can tell he is very self-absorbed with his own
 n
houghts, and he thinks that what he says is somehow the truth, even
f it doesn’t necessarily pan out that way.”

xtrinsic and intrinsic motivations

xternall y dri ven moti vations—external and introjected
ur analysis shows that addressing security can be driven by the de-

ire to be recognized as the security expert or to receive acknowl-
dgement (prestige), which helps in maintaining self-esteem and
elf-worth. P1 explained, “When [somebody] clicks your name [on
he employee website] and checks, it shows a badge that you’re ‘se-
urity certified’, which gives you a good feeling.”

In addition, we found three external motivations that are driven
y the desire to avoid negative consequences associated with a lack
f security: an overseeing entity finding non-compliance with regula-
ions (audit fear), losing market share or market value due to a
ecurity breach (business loss), and being monitored and pres-
ured by managers (pressure). P2 explained, “We have a safety
udit [conducted by an auditing organization]; all these guys they ac-
ually send auditors to us every, I don’t know, how ev er many months
..], and they look at the process. They, you know, scan every single
 hec k-in, ev ery single review, [...] and the y sa y ‘oh, no! You haven’t
one that, you lose your certification.’ [If] we lose our certification,
then] w e hav e no company, w e hav e no customer s.” Another exter-
al security motivation identified in our data is receiving rewards in
he form of career advancement [e.g. “promotions or mov[ing]
hroughout the scales and employment bands ”(P5)].

nternall y dri ven moti vations—identified and integrated
s shown in Fig. 4 , there are three types of internally driven moti-
ation, ordered from left to right in the figure by the degree of inter-
alization. Those to the right are considered most favorable [38].

12 Assal et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf005/8071721 by H

ala Assal on 29 M
arch 2025
We first discuss those falling in the extrinsic motivation category,
specifically motivations with Identified and Integrated regulation (cf.
section “Theoretical background on Self-Determination Theory”).
Discussion of intrinsic motivation follows later.

For extrinsic motivation, professional responsibility
and concern for users are two motivations where the action
is not performed for its inherent enjoyment, but rather to fulfill what
the developer views as their responsibility to their profession and to
safeguard users’ privacy and security. These motivations are a type
of integrated regulation, where the actor recognizes the importance
of the tasks involved and thus accepts the goals associated with the
tasks. For example, P3 said, “I would not feel comfortable with basi-
cally having something used by end users that I didn’t feel was secure,
or I didn’t feel respective of privacy, umm so I would try very hard
to not compromise on that.”

In addition, we identified motivations where participants view

the goal of addressing security as personally important (i.e. identified
regulation). For example, our analysis shows that understanding
the implications of ignoring or dismissing security increased
security awareness and motivated developers and their teams to in-
tegrate security in their SDLCs. P4 explained, “I know for me per-
sonally when I realized just how catastrophic something could be,
just by making a simple mistake, or not even a simple mistake, just
overlooking something simple. uhh it changes your focus.” This was
especially true when the understanding came through practical ex-
amples of how the developer’s code could lead to a security issue or
through experiencing a real security issue at work. Caring about the
company reputation and recognizing how it could be negatively
affected in case of a security breach is another example of identified
regulation motivation. Participants were also motivated to partici-
pate in security activities when security was a shared responsi-
bility for the project team rather than the responsibility of one
individual alone. This could in turn have a snowball effect and moti-
vate additional team members to recognize the importance of security
since their colleagues do (induced initiative). For example, P7
said, “When you see your colleagues actually spending time on some-
thing, you might think that ‘well, it’s something that’s worth spending
time on’, but if y ou w or k ed in a company that nobody just touches
security then you might not be motivated that much.”

Internall y dri ven moti vations—inherent satisfaction
We classify self-improvement as (the only) intrinsic motivation
to security. It is driven by the developer’s own interest in security and
the self-satisfaction of producing issue-free code. For example, P1
said, “And sometimes I will challenge [myself], that ‘okay, this time
I’m going to submit [my code] for a review where nobody will give
me a comment’, though that never happened, but still...”

Internalizing software security

During selective coding (the last coding stage in Grounded Theory),
we recognized that our themes from the previous coding stage could
be connected by a central theme about internalizing security—the
driving force behind participants’ security practices being their own
will as opposed to external factors. In our data, we saw varied mo-
tivation toward security and varying degrees of internalization. For
example, some participants spoke of the importance of security tasks
and how they personally value these tasks, while others were indiffer-
ent to security and indicated that security tasks are only performed to
satisfy an external driving force. Through our analysis, we found that
participants who were internally motivated toward software security
were more accepting and willing to adopt security practices.

We developed a human-oriented model that describes the process
of internalizing software security based on our analysis (see Fig. 5).
The end goal in this model is developers’ internalization of software
security, where they act toward security with autonomy and volition.
This can apply to developers with varying level of motivations, in-
cluding developers who are initially amotivated. In other words, the
process of internalizing can begin at any point in the continuum of
amotivations and motivations (shown in Fig. 4). Internally motivated
actions are often associated with positive outcomes, such as increased
engagement in the activity, improved performance, more cognitive
flexibility, and better learning [38 ,40]. All of these outcomes would
be useful and important for software security given its complexity
and how it is commonly de-prioritized in software development in
practice. As shown in Fig. 5 , the two levers that influence this inter-
nalization are “(perceived) competence” and “relatedness”; the first
refers to the developer’s software security abilities and their percep-
tions thereof, while the latter is the developer’s sense of connection
to their project team. Naturally, all the software security learning op-
portunities discussed in Table 2 (indicated by the purple box in Fig. 5)
help improve developers’ (perceived) competence. Additionally, when
these activities involve collaboration with other team members (indi-
cated by the pink box in Fig. 5), this can improve relatedness through
increasing the developer’s bond with other members and their sense
of belonging to the project team. With improving (perceived) compe-
tence and improving relatedness, developers’ autonomy to act toward
software security improves, thus encouraging internalization of soft-
ware security. Internalization is a continuous process, with the learn-
ing opportunities identified in our data acting as the enduring impetus
for improving competence and relatedness, and in turn creating two
feedback loops fueling developers’ internalization. We describe this
process next.

Improving performance–valuing security loop
Acquiring software security knowledge and expertise (e.g. through
company-organized security training or through receiving in-context
support during development tasks) improves developers’ competence
and their confidence in their ability to address security in their code
[i.e. (perceived) competence]. To encourage security learning among
amotivated developers, employers could rely on activities initiated
by the employer and activities initiated by the employer and devel-
oper (i.e. activities in the top two rows of the table in Fig. 5), with
the aim of gradually moving these developers toward more internally
driven motivations. Acquiring security knowledge drives the improv-
ing performance—valuing security loop (center left section of Fig. 5),
as described next.

When developers’ security knowledge improves, this improves (1)
their competence (i.e. their awareness of the negative consequences
of ignoring security, and their ability to address security) and (2) their
perceived competence (i.e. their confidence in applying their knowl-
edge). This leads to developers valuing security and thus encourages
them to adopt security practices with improved autonomy (i.e. their
actions are more internalized). In turn, with improved autonomy ,
developers persevere in their security practices (e.g. through critical
thinking, asking for help from security experts) which results in im-
proving performance . As developers observe positive outcomes from

their security efforts, this further improves their perceived compe-
tence . And with each cycle through the loop, developers are likely to
engage in further knowledge acquisition activities.

For example, a developer takes a course on Cross-Site Scripting
(XSS) vulnerabilities [84], which improves their competence and per-

S oftw are security in practice 13

Figure 5. Internalizing software security model. The model shows the process by which the security knowledge activities (from Table 2) contribute to the

continuous internationalization of security and to improving the developers’ autonomy toward software security.

c

u

n

u

k

t

(

t

t

c

I
M

r

c

p

a

i

s

t

a

n

p

s

t

t

t

d

l

c

k

X

h

v

w

b

l

i

o

t

b

a

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf005/8071721 by H

ala Assal on 29 M
arch 2025
eived competence. This helps the developer value security as they
nderstand the implications (cf. Fig. 4) of having this vul-
erability in their code, which could allow attackers to steal sensitive
ser data (concern for users). Equipped with this new security
nowledge and confidence in their abilities, the developer is more in-
ernally driven toward addressing XSS vulnerabilities in their code
 improved autonomy). This autonomy leads the developer to spend
he time and effort on protecting their applications against XSS at-
acks, thus improving their performance and leading to improved
ompetence . And the loop continues.

mproving commitment–valuing security loop
any security learning activities we have identified involve collabo-

ation among team members and across different teams within the
ompany (shown within the pink box in Fig. 5). In addition to im-
roving security knowledge, these activities help individuals develop
 sense of relatedness to their project team and its security goals, driv-
ng the improving commitment—valuing security loop (center right
ection of Fig. 5). We describe next.

Collaboration encourages individuals to recognize the project
eam’s overall goals beyond their own individual goals (e.g. function-
lity for developers or security for security engineers) and to feel con-
ected to their team (improved relatedness). When the project team
rioritizes security, this leads to individual developers also valuing
ecurity . Working toward this shared priority, each individual seeks
o contribute to the team with volition (i.e. improved autonomy) and
hus, becomes more internally driven toward adopting security prac-
ices. Improved autonomy leads to improving commitment from the
eveloper toward their team and its security goals, which in turn

eads to improved relatedness to the project team. With each cy-
le through the loop, the developer engages in further collaborative
nowledge acquisition activities.

For example, a developer and a tester collaborate on fixing an
SS vulnerability in the developer’s code, which includes discussing
ow this issue affects the team’s software security goals. As the de-
eloper works together with the tester and feels that “people are
atching out for [her] ” [P10], the developer deepens her sense of
elonging (cf. Fig. 4) to the team, which leads to improved re-

atedness . The developer will thus come to value security and view
t as a shared responsibility (cf. Fig. 4), aligning with the
bjectives of the project team to which she belongs. Consequently,
he developer is more internally driven to address the XSS vulnera-
ility in her code (improved autonom y). W ith improved autonomy
nd willingness to contribute to her team, the developer becomes

14 Assal et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf005/8071721 by H

ala Assal on 29 M
arch 2025
increasingly committed (improving commitment) to this shared se-
curity goal. This in turn reinforces the developer’s relatedness to
her team and promotes further collaborative knowledge acquisition
activities.

An ongoing process of internalization
As developers’ (perceived) competence and relatedness increase, they
gain and deepen their sense of belonging and their sense of responsi-
bility, to their team, company, and society. Thus, developers go into a
continuous process of internalizing the externally driven (or amo-
tivated) security activities (i.e. their motivations move toward the
right-side of Fig. 4), a process of active learning and self-growth [39].
And consequently, as developers’ security practices are internalized,
they can perform these practices with better performance, which im-
proves the security of their applications [38 ,40].

Factors affecting internalization

Our previous analysis related to security practices [28] describes fac-
tors that affect security practices in development teams. Here, we
discuss a subset of these factors that could help expedite, or hinder,
the process of internalizing software security practices.

Prior security knowledge
The duration it takes to fully internalize software security (cf. Fig. 5)
would likely be influenced by the developer’s existing security knowl-
edge and awareness. Under the same conditions, developers who al-
ready have prior background in security or have some awareness
of its implications would likely internalize and accept security more
readily than those who do not. In addition, developers who are re-
currently exposed to security learning opportunities (e.g. through in-
context learning activities) may be more likely to internalize security.

Company culture
As our analysis revealed, the attitude toward software security by the
developer’s team, supervisors, and those up in the company hierar-
chy has a substantial effect on the developer’s motivation to learn
about and internalize security. Developers whose teams view secu-
rity as a shared goal and responsibility are more likely to adopt this
view. Such teams typically follow a security plan. This can be both a
cause and an effect of internalizing security; they develop a security
plan to motivate security, and their motivation to security improves
their security plan (recall that internalization is an ongoing process).
Likewise, developers who recognize that security is valued by senior
management can be inspired to take an interest in security. For ex-
ample, P12 recounted, “As I was w or king with [my CTO], he was
telling me [about] all these different kinds of possible attack vectors
that may happen, such as, what happens if the attac k er gets access
to the actual heap of the program, the memory [...] So stuff like that,
I’v e nev er had to experience before [...] So, it was reall y, reall y inter-
esting.”

Resource a v ailability
Resource availability can substantially affect motivation, both for in-
dividual developers and for the entire development team [28]. For ex-
ample, when time is limited, developers preferred to prioritize their
primary tasks; only those who are highly motivated to focus on secu-
rity would ask for a deadline extension. In cases where the extension
request was denied, security would either be deferred or the team

would have to assign (or hire) extra personnel. However, with a lim-
ited budget, this may not always be possible.
Limitations and future work

Our sample size follows the norms this type of qualitative research
methodology; we stopped recruitment only after reaching data satu-
ration [73] (i.e. when new data did not add new insights relating to
our research questions). A future study could use quantitative meth-
ods to assess the prevalence of the different aspects of our internal-
ization model.

Like all interview-based research, our data is self-reported, which
may not necessarily fully represent developers’ reality. To address
this, we assured participants that their responses would be anony-
mous and that they may skip any questions they are not comfortable
answering, thus minimizing social desirability bias. To avoid prim-
ing participants on security, our study description did not mention
“security” and the interview focused on all aspects of software de-
velopment, which would naturally include security.

In this paper, we focus on software security in the professional
context, so all our participants are employed as software developers.
Thus, our results may not be generalizable to other types of develop-
ers (e.g. open-source developers). Additionally, all our participants’
organizations are based in North America, hence our results may
not be representative of organizations in other regions. Future work
could focus on security knowledge acquisition opportunities and se-
curity (de)motivators of software developers in different contexts and
locations. Another future research direction includes comparing the
different security learning activities and examining their effectiveness
so that organizations could prioritize those activities most likely to
be effective for their context.

Future work could also examine how to integrate collaborative
knowledge sharing opportunities into developers’ existing communi-
cation methods and platforms. For example, it may be useful to intro-
duce a security-focused branch within platforms like Stack Overflow

[58] to help developers find and share security knowledge. We also
suggest that future work should consider a deeper analysis of inter-
team collaboration and how security knowledge flows across teams
(i.e. how multiple activity systems interact during knowledge sharing,
see the section “Multiple activity systems interacting within project
teams” for further discussion).

Discussion and conclusion

In this paper, we focus on human aspects of software security in prac-
tice, specifically how developers acquire security knowledge (RQ1)
and their motivations toward software security (R Q2). W e now re-
visit the research questions and discuss our findings to provide further
insights.

RQ1: Security knowledge acquisition
We created a Knowledge Acquisition Taxonomy (Table 2) categoriz-
ing the different security learning activities identified in our data. For-
mal learning was the least commonly reported learning type among
our participants (cf. Table B1 in Appendix B). This included activities
such as regularly scheduled training sessions, and learning resources
(e.g. video lectures) provided by employers and often prepared by in-
house security experts. In contrast, the most common security learn-
ing opportunities resulted as a by-product of the developer’s tasks
and responsibilities. Such tasks involved collaboration with the de-
veloper’s teammates (e.g. pair programming) or with members from

other teams within the organization. For example, during code re-
view tasks, participants mentioned discussing security issues relating
to their software with security testers, which increased participants’
security awareness. In addition, this type of collaboration also al-

S oftw are security in practice 15

l

s

a

c

h

s

i

i

R
W

s

s

t

s

w

s

t

a

d

f

a

t

d

o

T

W

v

l

f

c

o

m

t

M

t

O

k

b

W

t

b

p

a

f

r

i

t

o

[

t

t

a

e

r

t

b

t

r

o

n

w

b

a

“

a

g

a

a

t

i

w

t

h

‘

I

a

t

l

s

b

o

f

t

[

j

u

a

c

t

c

n

a

P

T

t

k

l

t

s

m

w

o

t

n

p

t

a

W
W

t

B

a

k

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf005/8071721 by H

ala Assal on 29 M
arch 2025
ows other teams (such as security testing teams) to learn about is-
ues relating to software development. Collaborative activities such
s these can bring together multiple perspectives (multi-voicedness ,
f. the section “Theoretical background on activity theory”) and can
elp bridge knowledge gaps between teams. This type of knowledge
haring can also motivate developers to internalize security, which
n turns improves their perceived competence in addressing security
ssues, as discussed in the section “Internalizing software security.”

Q2: Software security motivations
e identified varying motivations (including amotivations) toward

oftware security; we presented these using the autonomy-control
pectrum of the Self-Determination Theory [37] (Section “Motiva-
ion for software security”). We found that developers tend to ignore
ecurity when they do not perceive value in focusing their efforts to-
ard it. In particular, when security is not among their primary re-

ponsibilities, our participants tend to focus on the other considera-
ions for which they will be held responsible. Such security devalu-
tion can have dangerous consequences as it could demotivate even
evelopers who consider security to be important. In contrast, we
ound that a team culture promoting security as a shared objective
nd responsibility motivates developers to value security and strive
o produce secure code. By belonging to this culture, the developer is
riven to internalize software security and thus acts toward it of their
wn will, e.g. out of personal interest or out of their concern for users.
his further strengthens their bond to their team and its objectives.
hile developers may adopt security practices due to external moti-

ators (e.g. to avoid negative consequences such as audit failures and
oss of reputation), internally driven motivations are more favorable
or security as per SDT, e.g. for improved performance, encouraging
reativity, and fostering learning (Section “Theoretical background
n Self-Determination Theory”). We developed a human-oriented
odel to describe the process of internalizing software security in

he section “Internalizing software security.”

ultiple activity systems interacting within project

eams

ur internalization model (in Fig. 5) described how collaborative
nowledge acquisition opportunities are beneficial for improving
oth security knowledge and motivations toward software security.
e reflect on these collaborative opportunities identified in our data

hrough the lens of Activity Theory (recall the section “Theoretical
ackground on activity theory”). We look at a software development
roject team (consisting of a development team, a testing team, etc.)
s a system of multiple interacting activity systems (see Fig. 1). We
ocus specifically on the interaction between the development team,
epresented by the development activity system , and the security test-
ng team, represented by the security testing activity system . Each
eam considers the software from a different perspective and has its
wn background, points of views, and objectives (multi-voicedness
 35]). For example, a development team would focus mainly on func-
ionality, whereas a security testing team focuses on security.

Some project teams attempt to benefit from their multi-voicedness
hrough communication, negotiations, and resolving conflicts. This
llows the activity system to become more interconnected [35]. For
xample, when the development and security testing teams collabo-
ate and harmonize their perspectives and objectives, this could lead
o increasing security knowledge within both teams and to satisfying
oth teams’ objectives: a functioning software for the development
eam and a secure software for the security testing team. Collabo-
ative opportunities identified in our knowledge acquisition taxon-
my (Table 2) can facilitate such inter-connectivity. These opportu-
ities are also highlighted in the right section of Fig. 5 . For example,
hen a developer and a security tester work together to fix a vulnera-
ility (Collaborating in the workplace), we see knowledge
cquisition happening across multiple activity systems.

P5 recounts that to support collaboration, the security testers
have full access to the development team, so they can coordinate
s much as they want.” This collaboration allows testers to have a
ood understanding of the features they are testing, write better tests,
nd minimizes conflicts between testers and developers. P2 provided
n example of how successful collaboration between developers and
esters helped avoid overlooking a serious security issue due to a gap
n the tester’s understanding of the system. He said, “a [tester] [...]
as testing some memory issue in the kernel. While he was doing the

est, he wanted to access kernel memory from the user process. So,
is test actually succeeds to get to the kernel memory. He’s [thinking]
if I can get to the kernel memory, everything is fine, continue on.’ So
 look at the test and I’m like ‘dude, [...] the test actually did discover
 flaw, but you didn’t tell me about it. This is a false negative.’ [...] So,
his [happened] because of the lack of understanding.” In contrast, a
ack of collaboration or breakdowns in the developer-tester relation-
hip can be detrimental. For example, P8 described the relationship
etween the developers and the testing team as “bad ” due to a lack
f collaboration and a lack of testers’ understanding of the software
unctionality.

Developers also benefit from such collaboration as it helps
hem stay updated on the constantly evolving security issues (e.g.
 12 , 85 , 86]). Given that security is not the developer’s primary ob-
ective, as evidenced by our data and previous work [16–19 ,24], it is
nrealistic to expect that developers will be able to remain informed
bout these issues on top of their development tasks. In addition, se-
urity information is often presented in a manner that is unusable
o developers [87 ,88]. Thus, collaborating with those with higher se-
urity expertise gives developers an opportunity to stay updated on
ew security issues, and it could also lead to improving performance
nd motivation toward adopting security practices.

ractical use for the knowledge acquisition taxonomy

he knowledge acquisition taxonomy presented in the sec-
ion “Knowledge acquisition taxonomy” describes different security
nowledge acquisition opportunities. Our data shows that implicit

earning, especially when it is part of the SDLC, can be more effec-
ive than other types of learning, and can have a positive impact on
oftware security. For example, our findings show that developers are
ore willing to engage in learning about security when it is combined
ith their existing tasks. This finding supports previous research rec-
mmending teaching developers about security in context [57 ,68].

Practitioners (e.g. employers, team leads) can use this taxonomy
o induce software security learning opportunities within their orga-
izations. With improved security knowledge, developers are more
repared to address software security, and, as detailed in the sec-
ion “Internalizing software security,” they may be more motivated
nd willing to do so.

hich activities should my organization adopt?
hen choosing activities, practitioners should take into considera-

ion the different features of each activity and developers’ initiative.
ased on our analysis, we have identified the following three main
spects to consider when deciding on activities to promote security
nowledge.

16 Assal et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf005/8071721 by H

ala Assal on 29 M
arch 2025
Initiative. If the developer (being the learner) is motivated to learn
about security, then all the activities listed in the taxonomy are suit-
able. However, in case of an amotivated developer, it is unlikely that
they would initiate an explicit learning activity. Thus, the employer
could instead look into initiating (or at least partly initiating) learn-
ing opportunities. Ergo, activities listed in the first, and perhaps the
second row, of the taxonomy (Table 2) may be suitable. In addition,
learning opportunities that are a by-product of the developer’s main
tasks (B) avoid competing for the developer’s time and may be bet-
ter received by such developers, especially those opposed to manda-
tory explicit learning (e.g. mandatory training).

Experience. Organizations that lack in-house security expertise
should avoid activities that require high internal security expertise.
They could consider activities without that requirement (i.e. those
marked with), or activities with security expertise external to the
company (i.e. those marked with and). When relying on exter-
nal expertise, it is important to check the source’s credibility and to
encourage developers to use credible sources; developers often rely on
external resources that are not necessarily ideal for security [60 ,89].

Budget. The available budget that the employer is willing to allocate
for promoting security is another deciding aspect. Fortunately, most
learning opportunities derived from our interviews are relatively low

cost. However, as the affordability of an activity varies between com-
panies, employers would need to decide on the most useful activity
that fits their budget. In addition, some employers may wish to invest
in more expensive learning opportunities, such as offering security
courses to their developers, or by hiring external security experts to
provide in-context support to developers. Although the latter did not
come up in our interviews, it has been reported elsewhere [90].

Expanding the taxonomy
This taxonomy is not exhaustive, thus employers could map their
own activities onto the taxonomy to compare and determine whether
they are a good fit for them and their developers. For example, or-
ganizations sometimes use Capture The Flag (CTF) events to sup-
port security learning [91 ,92]. CTFs [93] are competitions where
teams work together to solve coding challenges; developers thus learn
through hands-on experience while socializing and competing on the
challenges [91 ,92]. Within the taxonomy, CTFs would be considered
as semi-formal learning opportunities, and placed in the Employer &

Developer initiator row on Table 2 , alongside conferences. Since the
primary reasons for participating in CTFs are socialization, prizes,
and bragging rights [91 ,92], learning is a by-product (B). CTFs are
also not part of the SDLC (), and the security expertise of team

members can vary based on their individual experiences and knowl-
edge (). Knowledge could be from external () or internal sources
(), depending on the setup and location of the CTF.

Moti vating developer s toward adopting security

practices

Finding the best way to motivate developers is not a trivial task. Even
though external rewards and punishment may help induce external
motivation, previous research in other domains [38 ,94–96] suggests
that these approaches can have detrimental consequences, such as
negatively influencing conceptual learning and problem solving. For
example, externally motivated developers might gain limited knowl-
edge about individual security issues rather than gaining an under-
standing of the underlying security concepts that may be necessary
for solving new security issues. Thus, relying solely on external moti-
vations may contribute to the poor performance and inadequate se-
curity practices identified in previous work (e.g. [28]). Of the partic-
ipants who had external motivations for security (e.g. audits), those
who also had internal motivations had better security practices than
those who did not.

Based on our findings, internal motivations are more favorable
for practicing software security compared to other motivation types.
Thus, guided by our analysis, we built a security internalization
model (Section “Internalizing software security”) to explain how

software security practices can be transformed to be internally moti-
vated, rather than an external chores. Such transformation occurs by
recognizing the value of incorporating software security and believ-
ing in one’s ability to have an impact on the security of the software
being built. To improve chances of success, security tasks should be
accompanied by improving the team’s morale when it comes to se-
curity. Based on our data, this can be through adopting a security
culture, supporting developers in these tasks, providing positive en-
couragement, and allowing teams to see value and identify with such
tasks. In addition, the internalization of security can be reinforced by
promoting developers’ security awareness which helps to improve
their confidence in addressing security issues. Thus, we recommend
that development teams focus on both increasing security awareness
and improving developers’ motivation to achieve positive security
outcomes.

The role of Artificial Intelligence

Use of Artificial Intelligence in software development
Since our participant interviews, there have been significant advance-
ments in Artificial Intelligence (AI) tools such as ChatGPT (https:
// chatgpt.com/). These tools are now used by developers [97 ,98] as a
resource for explaining concepts and providing instant feedback [99],
and to generate code or automate routine tasks [100]. However, de-
velopers relying on AI-generated code could introduce more security
vulnerabilities compared to those not using AI, and yet have false
confidence in the code’s security [101]. In fact, Khoury et al. [102]
identified various security vulnerabilities in AI-generated code, in-
cluding code injection, buffer overflow, and XSS vulnerabilities. This
could be the result of the AI models being trained on data obtained
from the internet, which may include unverified or insecure code sam-
ples [101 , 103 , 104]. The security implications of adopting AI tools in
software development remains unclear and warrants further investi-
gation.

Impact of AI on security knowledge
Developers may learn about security from interactions with AI tools,
e.g. when debugging code or searching for information. However,
their learning may be limited to the particular solution they seek
(e.g. how to request user input) without gaining an understanding of
relevant security concepts (e.g. code injection attacks). Additionally,
information generated by AI tools may be inaccurate, outdated, or
incomplete [105]; and without contextual details relating to the de-
veloper’s work (e.g. their application’s threat model), AI tools’ output
may be of limited applicability [106]. The quality of AI-generated in-
formation is also greatly dependent on the specifics of the developer’s
prompt; minor prompt variations could substantially change the out-
put [107]. Developers with limited security expertise may thus face
challenges when using AI tools to obtain security information. On
the other hand, developers who rely heavily on AI tools may per-
ceive these tools as sufficient for their needs and become reluctant to
engage in security knowledge acquisition activities (Section “Knowl-
edge acquisition taxonomy”).

https://chatgpt.com/

S oftw are security in practice 17

s

d

f

c

e

O

p

b

I
I

r

q

A

r

w

o

h

d

t

s

w

r

v

I
D

u

u

o

i

n

t

t

q

t

o

i

i

i

w

o

t

C

W

t

s

p

d

t

o

s

f

m

w

t

A
H

o

e

W

W

y

W

C

F
H

a

(

A
T

t

r

A
l

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf005/8071721 by H

ala Assal on 29 M
arch 2025
Moreover, developers’ increasing reliance on AI as a primary
ource of development-related information [108] may lead to re-
uced communication between team members. This raises concerns
or software security as informal discussions within the workplace
reate opportunities for developers to gain relevant security knowl-
dge (as discussed in the section “Internalizing software security”).
rganizations may thus need to focus on adopting and creating op-
ortunities that foster communication between project team mem-
ers, such as mediated social contact activities or hosting CTFs.

mpact of AI on security motivation
nternalizing security (i.e. being internally motivated to adopt secu-
ity practices, cf. the section “Internalizing software security”) re-
uires sustained relatedness to the project team and its security goals.
s discussed above, developers’ increasing reliance on AI tools could

educe opportunities for interaction between team members, which
ould lower their sense of relatedness to their team. As the devel-
per becomes disconnected from their team, it becomes harder for
er to value security or to view it as a shared responsibility, thus hin-
ering the internalization of software security. Overreliance on AI
ools could also lead to amotivation should the developer defer re-
ponsibility for software security to the AI tool. While AI tools come
ith promises for improved software development processes, further

esearch is needed to fully understand their impact on security moti-
ations.

ntegration within the taxonomy
espite the potential shortcomings discussed above, developers may
se AI tools as a source for acquiring security knowledge. However,
ntil security considerations become a priority for such tools, devel-
pers need to thoroughly review the generated output to ensure the
nformation is reliable and secure [106 ,109]. For completeness, we
ow discuss how using AI tools like ChatGPT could fit within our
axonomy to allow for comparison with other knowledge acquisi-
ion activities (cf. the section “Practical use for the knowledge ac-
uisition taxonomy”). The cost for this activity varies based on the
ype of the AI tool used ($-$$) . Learning is typically a byproduct
f the activity (B), and is integrated into the SDLC (). Expertise
s questionable due to potential inaccuracies () and the source of
nformation is external to the organization (). In Table 2 , this activ-
ty would be considered as a semi-formal learning opportunity, and
ould be placed in either the Employer & Developer row if the usage
f AI tools is encouraged by the employer, or the Developer row if
he usage is purely the developer’s decision.

onclusion

ith an increasing number of security-sensitive software applica-
ions, it is essential for software developers to be aware of software
ecurity and stay motivated in order to address security in their ap-
lications. In this paper, we explicate security knowledge acquisition,
eveloper motivation toward security and offer a framework for in-
ernalizing security. Our novel taxonomy can help practitioners rec-
gnize existing developer activities that may lead to advancing their
ecurity knowledge. In addition, it could help employers explore dif-
erent learning opportunities and decide on the best methods to pro-
ote security knowledge within their organization. We envision this
ork to lead to increase in security awareness and in developers mo-

ivated toward improving the security of their software applications.

uthor contributions

ala Assal (Conceptualization, Formal analysis, Funding acquisition, Method-
logy, Supervision, Visualization, Writing–original draft, Writing–review &
diting), Srivathsan G. Morkonda (Visualization, Writing–original draft,
riting–review & editing), Muhammad Zaid Arif (Writing–original draft,
riting–review & editing), Sonia Chiasson (Conceptualization, Formal anal-

sis, Funding acquisition, Methodology, Supervision, Writing–original draft,
riting–review & editing)

onflict of interest : There are no conflicts of interest.

unding

.A. acknowledges her NSERC Discovery Grant (RGPIN-2021-03808). S.C.
cknowledges NSERC for funding of an Arthur B. McDonald Fellowship
SMFSA-566403-2022) and a Discovery Grant (RGPIN-2023-04653).

ppendix A: Interview script
he following questions represent the main themes discussed during the in-

erviews. We may have probed for more details depending on participants’
esponses.

� What type of development do you do?
� What are your main priorities when doing development? (In order of pri-

ority)
� Do your priorities change when a deadline approaches?
� What about security? Is it something you worry about?
� Which are the best methods in your opinion for ensuring the security of

software applications?
� How does security fit in your priorities?
� Which resources do you use to gain security knowledge?
� Do you get training (formal, or self-learning) to gain better knowledge of

software security? How often?
� Which software security best practices are you familiar with?
� Are there any obligations by your supervisor/employer for performing se-

curity testing?
� What methods do you use to try to ensure the security of applications?
� Do you perform testing on your (or someone else’s) applications/code?
� Do you perform code reviews?
� How would you describe the relation between the development and the

testing team?
� Can you think of a story of security issue that was frustrating and how

you dealt with it?

ppendix B: Distribution of participants’ security

earning opportunities

18 Assal et al.

Table B1. Distribution of participants mentioning learning opportunities fitting in each cell of the knowledge acquisition taxonomy.

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/
Appendix C: Motivations and amotivations for
software security
Table C1. Motivations and amotivations of software security.

Code Description Exam

Amotivation - Felt lac
Lack of resources The shortage in resources, e.g. budget

and human power, needed to perform

security tasks

“We
vulne
have
um, t

Lack of support The inadequate security tools and
processes, or the lack thereof

“We
talkin

Amotivation - Lack of inte
Not my responsibility Security is not part of my duties “Dev

it’s no
to the

Security is handled elsewhere Security is another entity’s responsibility “I us
my fe

Induced passiveness The surrounding environment causes
passiveness toward security

“I do
code

No perceived loss The lack of competition, expected
repercussions, and loss

“I ca
much

No perceived risk The company or application type is
perceived as not a valuable target for
attacks

“For
vulne
don’t

Competing priorities Other tasks compete for resources and
are prioritized over security

“I ha
with
just c

Amotivation - Defiance/Re
Inflexibility The resistance to new technology and

being set in one’s way
“[My
incor
and h
it [...]
ple Quote

k of competence
don’t have that much manpower to explicitly test security
rabilities, [..] w e don’t hav e those kind of resources. But ideally if w e did
[a big] company size, I would have a team dedicated to find exploits,
hat sorta thing. But unfortunately we don’ t. ”
don’t have any formal process of like a code review, sitting down and
g about security risks ”
rest, relevance, value
 eloper s are similar to me, they don’t care that much about security or
t part of their day to day job, therefore they don’t pay much attention
 security aspect of the code.”

ually don’t as a developer go to the extreme of testing vulnerability in
ature, that’s someone else’s to do.”
n’t really trust them [my team members] to run any kind of like source
scanners or anything like that. I know I’m certainly not going to.”
n introduce a big security issue and I definitely won’t be blamed that
 for it ”
a small company, nobody will usually attack or compromise the
rabilities in your system. If something really bad happens, usually, you
 really get enough [bad] reputation as well.”
ve security issues that are frustrating, but I haven’t been able to deal
them yet. [...] It’s not something that we’ve been able to deal with yet,
ause of priorities with everything else.”
sistance to influence
 team is] using a framew or k and these guys, they used the framew or k
rectl y, the y didn’t like how certain part of this coding framework works
as been designed, so they decided to do things completely different than
 And I am sure it’s gonna result in a security risk down the line.”

article/11/1/tyaf005/8071721 by H
ala Assal on 29 M

arch 2025

S oftw are security in practice 19

Table C1. Continued

Code Description Example Quote

Extrinsic Motivation - External
Audit fear The presence of an overseeing and

supervising entity
“One of the main reasons that they did [address security] was audits. I think
they had to comply with certain security regulation standard, basically every
quarter or so they’re being c hec k ed for compliance, therefore they had the
make sure the auditors can’t find any issue during the penetration test.”

Business loss Losses that a business can incur, e.g.
losing customers, due to security issues

“We ended up ignoring security until we got a decent customer base where
w e w ere actually concerned that if our product was compromised, w e will
lose these customers.”

Pressure Continuous pressure by superiors “If they find a security issue, then you will be in trouble. Everybody will be at
y our bac k, and y ou hav e to fix it as soon as possible.”

Career advancement Software security efforts and knowledge
move employees up in the hierarchy

“When it comes time to do promotions or move throughout the scales and
employment bands, the people with the higher knowledge on everything
move up and the people who don’t necessarily, like, didn’t take those security
training seriously, [...] they sort of stay in the same range.”

Extrinsic Motivation - Introjected
Prestige Acknowledgement and preserving

self-image
“Whenever somebody wants to find about you, then they go and check you in
the employ ee w ebsite. Then, when they clic k y our name and c hec k, it shows a
badge that you’re security certified, which gives you a good feeling.”

Extrinsic Motivation - Identified
Understanding the
implications

Recognizing and understanding the
potential implications of ignoring
security

“Just understanding the implications, I guess, of what could happen [would
motivate dev eloper s be more security-oriented]. I know for me per sonally
when I realized just how catastrophic something could be, just by making a
simple mistake, or not even a simple mistake, just overlooking something
simple. uhh it changes your focus.”

Company reputation The company and its employees care
about their reputation and how

customers perceive the company

“We need to know safe secure coding tec hniques, w e need to know what
paths the attac k er s might take, and have you fixed everything on your code
and your code doesn’t have any vulnerabilities. [...] because finally, it is going
to go under your logo.”

Shared responsibility The responsibility of software security
is shared among different teams within
the project team

“[If we find a vulnerability,] we try not to say, ’you personally are responsible
for causing this vulnerability’. I mean, it’s a team effort, people looked at that
code and they passed on it too, then it’s shared, really.”

Induced initiative Opportunities may exist that lead
developers to take the software security
initiative

“When you see your colleagues actually spending time on something, you
might think that ‘well, it’s something that’s worth spending time on’, but if
y ou w or k ed in a company that nobody just touc hes security then y ou might
not be motivated that much.”

Extrinsic Motivation - Integrated
Professional responsibility Feeling responsible as a professional “I would hesitate to release anything that’s not functional and I also hesitate

to release anything that had security concerns.”
Concern for users Caring about users’ privacy and security “I would not feel comfortable with basically having something used by end

users that I didn’t feel was secure, or I didn’t feel respective of privacy, umm

so I would try very hard to not compromise on that.”
Intrinsic Motivation

Self-improvement The interest in, and self-satisfaction
from, improving one’s implementation

“And sometimes I will challenge [myself], that ‘okay, this time I’m going to
submit [my code] for a review where nobody will give me a comment’,
though that never happened, but still...”

R

1

2

3

4

5

6

7

8

9

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf005/8071721 by H

ala Assal on 29 M
arch 2025
EFERENCES

. Assal H, Chiasson S, Biddle R. Cesar: visual representation of source
code vulnerabilities. In: 2016 Symposium on Visualization for Cyber Se-
curity (VizSec) , Baltimore, MD, USA: IEEE, 2016, 1–8.

. Backes M, Rieck K, Skoruppa M,. et al. Efficient and flexible discovery
of PHP application vulnerabilities. In: 2017 European Symposium on
Security and Privacy (EuroS&P) , Paris, France: IEEE, 2017, 334–49.

. Chess B, McGraw G. Static analysis for security. IEEE Secur Priv
2004; 2 :76–9. https:// doi.org/ 10.1109/ MSP.2004.111

. Smith J, Johnson B, Murphy-Hill E,. et al. Questions developers ask
while diagnosing potential security vulnerabilities with static analysis.
In: Proceedings of the 2015 10th Joint Meeting on Foundations of Soft-
ware Engineering. ESEC/FSE 2015 . New York, NY: ACM, 2015, 248–
59.

. Espinha Gasiba T, Lechner U, Pinto-Albuquerque M,. et al. Is secure
coding education in the industry needed? An investigation through a
large scale survey. In: 2021 IEEE/ACM 43rd International Conference
on Softw are Engineering: Softw are Engineering Education and Training
(ICSE-SEET) , Madrid: ES, 2021, 241–52.

. Weir C, Becker I, Noble J,. et al. Interventions for long-term software
security: creating a lightweight program of assurance techniques for de-
velopers. Software Pract Exp 2020; 50 : 275–98. https:// doi.org/ 10.1002/
spe.2774

. Microsoft Corp. Microsoft Security Development Lifecycle. https://ww
w.microsoft.com/ en-us/ securityengineering/ sdl/ practices . (April 2024,
date last accessed).

. Mandiant. Mandiant Unveils M-Trends 2023 Report, Delivering Critical
Threat Intelligence Directly from the Frontlines. 2023. https://www.ma
ndiant.com/company/press- releases/m- trends- 2023 . (June 2024, date
last accessed).

. NIST. CVSS Severity Distribution Over Time. https://nvd.nist.gov/gener
al/visualizations/vulnerability- visualizations/cvss- severity- distribution-
over-time . (September 2024, date last accessed).

https://doi.org/10.1109/MSP.2004.111
https://doi.org/10.1002/spe.2774
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.mandiant.com/company/press-releases/m-trends-2023
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time

20 Assal et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf005/8071721 by H

ala Assal on 29 M
arch 2025
10. Greenberg A. Hackers Remotely Kill a Jeep on the Highway—With Me
in It. 2015. https:// www.wired.com/ 2015/07/ hackers- remotely- kill- jeep
-highway/. (May 2017, date last accessed).

11. Gitlin JM. Hackers discover that vulnerabilities are rife in the auto in-
dustry. 2023. https:// arstechnica.com/ cars/2023/ 01/hackers- discover- th
at- vulnerabilities- are- rife- in- the- auto- industry/. (June 2024, date last
accessed).

12. Radcliffe J. Hacking Medical Devices for Fun and Insulin: Breaking
the Human SCADA System. 2011. https://media.blackhat.com/bh- us- 1
1/ Radcliffe/ BH _ US _ 11 _ Radcliffe _ Hacking _ Medical _ Devices _ WP.pdf.
(February 2017, date last accessed].

13. Pance L. Hackers Turn Smart Fridges into Cryptocurrency Miners, Caus-
ing Global Kitchen Meltdown. 2024. https:// techreport.com/news/ hack
ers- turn- smart- fridges- mining- rigs/ (June 2024, date last accessed).

14. Blank R, Gallagher P. NIST Special Publication 800-30 Revision 1:
Guide for Conducting Risk Assessments. 2012. NIST Technical Series
Publication, https:// csrc.nist.gov/ pubs/sp/ 800/ 30/r1/ final . (June 2024,
date last accessed].

15. Whitten A, Tygar JD. Why Johnny Can’t Encrypt: A Usability
Evaluation of PGP 5.0.In: USENIX Security Symposium . Vol. 348 .
1999.

16. Acar Y, Fahl S, Mazurek ML. You are Not Your Developer, Either: A

Research Agenda for Usable Security and Privacy Research Beyond End
Users. In: 2016 Cyber security Dev elopment (SecDev) , Boston, MA, USA:
IEEE, 2016, 3–8.

17. Green M, Smith M. Developers are Not the Enemy!: The Need for Us-
able Security APIs. IEEE Secur Priv 2016; 14 :40–6. https:// doi.org/ 10.1
109/MSP.2016.111

18. T ahaei M, V aniea K. A Survey on Developer-Centred Security. In:
2019 European Symposium on Security and Privacy Workshops (Eu-
roS&PW) , Stockholm, Sweden: IEEE, 2019, 129-38.

19. Mokhberi A, Beznosov K. SoK: Human, Organizational, and Technolog-
ical Dimensions of Developers’ Challenges in Engineering Secure Soft-
ware. In: Proceedings of the 2021 European Symposium on Usable Se-
curity . New York, NY, USA: ACM, 59–75.

20. Witschey J, Xiao S, Murphy-Hill E. Technical and Personal Factors
Influencing Developers’ Adoption of Security Tools. In: Proceedings of
the 2014 ACM Workshop on Security Information Wor k er s, SIW ’14 .
New York, NY, USA: ACM, 2014, 23–26.

21. Xiao S, Witschey J, Murphy-Hill E. Social Influences on Secure Devel-
opment Tool Adoption: Why Security Tools Spread. In: Proceedings of
the 17th ACM Conference on Computer Supported Cooperative Work
and Social Computing, CSCW ’14 . New York, NY, USA. ACM, 2014,
1095–106.

22. Xie J, Lipford HR, Chu B. Why do programmers make security er-
rors? In: 2011 Symposium on Visual Languages and Human-Centric
Computing (VL/HCC) , Pittsburgh, PA: IEEE, 2011, 161–64.

23. Marshall BK. Passwords Found in the Wild for January 2013. http://bl
og.passwordresearch.com/ 2013/02/ . (April 2017, date last accessed).

24. Wurster G, van Oorschot PC. The Developer is the Enemy. In: Proceed-
ings of the 2008 New Security Paradigms Workshop, NSPW ’08 . New

York, NY: ACM, 2008, 89–97.
25. Votipka D, Fulton KR, Parker J,. et al. Understanding Security Mistakes

Developers Make: Qualitative Analysis from Build It, Break It, Fix It. In:
Proceedings of the 29th USENIX Conference on Security Symposium ,
USENIX Association, 2020, 109–26.

26. Oliveira D, Rosenthal M, Morin N,. et al. It’s the Psychology Stupid:
How Heuristics Explain Software Vulnerabilities and How Priming Can
Illuminate Developer’s Blind Spots. In: Proceedings of the 30th Annual
Computer Security Applications Conference, A CSA C ’14 . New York,
NY: ACM, 2014, 296–305.

27. Baca D, Petersen K, Carlsson B,. et al. Static Code Analysis to De-
tect Software Security Vulnerabilities - Does Experience Matter?In:
2009 International Conference on Availability, Reliability and Security ,
Fukuoka, Japan: IEEE, 2009, 804–10.

28. Assal H, Chiasson S. Security in the Software Development Lifecycle. In:
Fourteenth Symposium on Usable Privacy and Security (SOUPS 2018) .
Baltimore, MD: USENIX Association, 2018.
29. Assal H, Chiasson S. Motivations and Amotivations for Software Se-
curity. In: SOUPS Workshop on Security Information Wor k er s (WSIW) .
Baltimore, MD: USENIX Association, 2018.

30. Lopez T, Tun TT, Bandara AK,. et al. Taking the Middle Path: Learn-
ing About Security Through Online Social Interaction. IEEE Software
2020; 37 :25–30. https:// doi.org/ 10.1109/ MS.2019.2945300

31. Braz L, Bacchelli A. Software Security during Modern Code Review:
The Developer’s Perspective. In: Proceedings of the 30th ACM Joint Eu-
ropean Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering, ESEC/FSE 2022 . New York, NY: ACM

2022, 810–21.
32. Engeström Y. Learning by expanding. Center for Activity Theory and

Dev elopmental Wor k Researc h . Orienta-konsultit 1987.
33. Engeström Y, Miettinen R, Punamäki RL. Per spectiv es on Activity The-

ory . Cambridge: Cambridge University Press, 1999.
34. Kuutti K. Activity theory as a potential framework for human-computer

interaction research. Context and Consciousness: Activity Theory and
Human-Computer Interaction 1996;17–44

35. Engeström Y. Expansive Learning at Work: Toward an activity theo-
retical reconceptualization. Journal Educ Work 2001; 14 :133–56. https:
// doi.org/ 10.1080/ 13639080020028747

36. O’Connor K. In: Activity Theory . John Wiley and Sons, 2015. https:
//onlinelibrary .wiley .com/doi/abs/10.1002/9781118611463.wbielsi188 .

37. Deci E, Ryan RM. Intrinsic Motivation and Self-Determination in Hu-
man Behavior . US: Springer, 1985.

38. Ryan RM, Deci EL. Self-determination theory and the facilitation of
intrinsic motivation, social development, and well-being. Am Psychol
2000; 55 :68. https:// doi.org/ 10.1037/ 0003-066X.55.1.68

39. Ryan RM, Deci EL. Self-determination theory: Basic psychological
needs in motivation, development, and wellness . New York, NY: Guil-
ford Publications, 2017.

40. Vallerand RJ, Blssonnette R. Intrinsic, Extrinsic, and Amotiva-
tional Styles as Predictors of Behavior: A Prospective Study. J Pers
1992; 60 :599–620. https:// doi.org/ 10.1111/ j.1467-6494.1992.tb00922
.x

41. Fulton KR, Votipka D, Abrokwa D,. et al. Understanding the How

and the Why: Exploring Secure Development Practices through a Course
Competition. In: Proceedings of the 2022 A CM SIGSA C Conference on
Computer and Communications Security . New York, NY: A CM, 2022.

42. Lipner S. The Trustworthy Computing Security Development Lifecy-
cle. In: 20th Annual Computer Security Applications Conference. IEEE,
2004, 2–13.

43. Fulton KR, Chan A, Votipka D,. et al. Benefits and Drawbacks of
Adopting a Secure Programming Language: Rust as a Case Study. In:
Proceedings of the Seventeenth USENIX Conference on Usable Privacy
and Security, SOUPS’21 . USENIX Association, 2021.

44. Braz L, Aeberhard C, Çalikli G,. et al. Less is More: Supporting Devel-
opers in Vulnerability Detection during Code Review. In: Proceedings of
the 44th International Conference on Software Engineering, ICSE ’22 .
New York, NY: A CM, 2022, 1317–29.

45. Danilova A, Naiakshina A, Rasgauski A,. et al. Code Reviewing as
Methodology for Online Security Studies with Developers: A Case Study
with Freelancers on Password Storage. In: Proceedings of the Seven-
teenth USENIX Conference on Usable Privacy and Security, SOUPS’21 .
USENIX Association, 2021.

46. Naiakshina A, Danilova A, Gerlitz E,. et al. “If you want, I can store the
encrypted password”: A Password-Storage Field Study with Freelance
Developers. In: Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems, CHI ’19 . New York, NY: ACM, 2019,
1–12.

47. van der Linden D, Anthonysamy P, Nuseibeh B,. et al. Schrödinger’s
Security: Opening the Box on App Developers’ Security Rationale. In:
2020 IEEE/ACM 42nd International Conference on Software Engineer-
ing (ICSE) . New York, NY: A CM, 2020.

48. Haney JM, Lutters WG. Skills and Characteristics of Successful Cy-
bersecurity Advocates. In: Workshop on Security Information Wor k er s,
Symposium on Usable Privacy and Security (SOUPS) . Santa Clara, CA:
USENIX Association, 2017.

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://arstechnica.com/cars/2023/01/hackers-discover-that-vulnerabilities-are-rife-in-the-auto-industry/
https://media.blackhat.com/bh-us-11/Radcliffe/BH_US_11_Radcliffe_Hacking_Medical_Devices_WP.pdf
https://techreport.com/news/hackers-turn-smart-fridges-mining-rigs/
https://csrc.nist.gov/pubs/sp/800/30/r1/final
https://doi.org/10.1109/MSP.2016.111
http://blog.passwordresearch.com/2013/02/
https://doi.org/10.1109/MS.2019.2945300
https://doi.org/10.1080/13639080020028747
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118611463.wbielsi188
https://doi.org/10.1037/0003-066X.55.1.68
https://doi.org/10.1111/j.1467-6494.1992.tb00922.x

S oftw are security in practice 21

4

5

5

5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

6

6

6

7

7

7

7

7

7

7

7

7

7

8

8

8

8

8

8

8

8

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf005/8071721 by H

ala Assal on 29 M
arch 2025
9. Nurgalieva L, Frik A, Doherty G. A Narrative Review of Factors Af-
fecting the Implementation of Privacy and Security Practices in Software
Development. ACM Comput Surv 2023; 55 :1–27. https:// doi.org/ 10.114
5/3589951

0. Kathrin Bednar SS, Langheinrich M. Engineering Privacy by Design: Are
engineers ready to live up to the challenge? Inform Soc 2019; 35 :122–42.
https:// doi.org/ 10.1080/ 01972243.2019.1583296

1. Ryan I, Roedig U, Stol KJ. Understanding Developer Secu-
rity Archetypes. In: 2021 IEEE/ACM 2nd International Workshop
on Engineering and Cybersecurity of Critical Systems (EnCyCriS) ,
Madrid, Spain, 2021, 37–40.

2. Spiekermann S, Korunovska J, Langheinrich M. Inside the Organiza-
tion: Why Privacy and Security Engineering Is a Challenge for Engineers.
Proc IEEE , 2019; 107 :600–15. https:// doi.org/ 10.1109/ JPROC.2018.2
866769

3. Danilova A, Naiakshina A, Smith M. One Size Does Not Fit All: A
Grounded Theory and Online Survey Study of Developer Preferences
for Security Warning Types. In: Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, ICSE ’20 . 2020,
136–48.

4. T ahaei M, V aniea K, Beznosov K,. et al. Security Notifications in Static
Analysis Tools: Developers’ Attitudes, Comprehension, and Ability to
Act on Them. In: Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems, CHI ’21 , New York, NY: A CM, 2021.

5. Acar Y, Backes M, Fahl S,. et al. Comparing the Usability of Crypto-
graphic APIs. In: 2017 IEEE Symposium on Security and Privacy (SP) ,
San Jose, CA, USA, 2017, 154–71.

6. Oyetoyan TD, Cruzes DS, Jaatun MG. An Empirical Study on the Rela-
tionship between Software Security Skills, Usage and Training Needs in
Agile Settings. In: 2016 11th International Conference on Availability,
Reliability and Security (ARES) , Salzburg, Austria: IEEE, 2016.

7. Tuladhar A, Lende D, Ligatti J,. et al. An Analysis of the Role of Situ-
ated Learning in Starting a Security Culture in a Software Company. In:
Proceedings of the Seventeenth USENIX Conference on Usable Privacy
and Security, SOUPS’21 . USENIX Association, 2021.

8. Stack Overflow - Where Developers Learn, Share, and Build Careers.
https://stackoverflow.com . (January 2018, date last accessed].

9. Fischer F, Böttinger K, Xiao H,. et al. Stack Overflow Considered Harm-
ful? The Impact of Copy&Paste on Android Application Security. In:
2017 IEEE Symposium on Security and Privacy (SP) , San Jose, CA, USA,
2017, 121–36.

0. Acar Y, Backes M, Fahl S,. et al. You Get Where You’re Looking for:
The Impact of Information Sources on Code Security. In: 2016 IEEE
Symposium on Security and Privacy (SP) , San Jose, C A, US A, 2016, 289–
305.

1. Díaz Ferreyra NE, Vidoni M, Heisel M,. et al. Cybersecurity Discussions
in Stack Overflow: A Developer-Centred Analysis of Engagement and
Self-Disclosure Behaviour. Soc Netw Anal Mining 2024; 14 :16.

2. Horvath A, Liu MX, Hendriksen R,. et al. Understanding How Pro-
grammers Can Use Annotations on Documentation. In: Proceedings of
the 2022 CHI Conference on Human Factors in Computing Systems,
CHI ’22 . New York, NY: A CM, 2022.

3. Arab M, LaToza TD, Liang J,. et al. An Exploratory Study of Shar-
ing Strategic Programming Knowledge. In: Proceedings of the 2022
CHI Conference on Human Factors in Computing Systems, CHI ’22 .
New York, NY: A CM, 2022.

4. Pieczul O, Foley S, Zurko ME. Developer-centered Security and
the Symmetry of Ignorance. In: Proceedings of the 2017 New Secu-
rity Paradigms Workshop, NSPW 2017 . New York, NY: ACM, 2017,
46–56.

5. Poller A, Kocksch L, Türpe S,. et al. Can Security Become a Routine?:
A Study of Organizational Change in an Agile Software Development
Group. In: Proceedings of the 2017 ACM Conference on Computer Sup-
ported Cooperative Work and Social Computing, CSCW ’17 . New York,
NY: ACM, 2017, 2489–503.

6. Woon IMY, Kankanhalli A. Investigation of IS professionals’ intention
to practise secure development of applications. Int J Hum-Comput Stud
2007; 65 :29–41. https:// doi.org/ 10.1016/ j.ijhcs.2006.08.003
7. Weir C, Hermann B, Fahl S. From Needs to Actions to Secure Apps?
The Effect of Requirements and Developer Practices on App Security. In:
Proceedings of the 29th USENIX Conference on Security Symposium .
USENIX Association, 2020.

8. Thomas TW, Tabassum M, Chu B,. et al. Security During Application
Development: An Application Security Expert Perspective. In: Proceed-
ings of the 2018 CHI Conference on Human Factors in Computing Sys-
tems, CHI ’18 . New York, NY: ACM, 2018, 262:1–262:12.

9. Lopez T, Sharp H, Tun T,. et al. Talking About Security with Profes-
sional Developers. In: 2019 IEEE/ACM Joint 7th International Work-
shop on Conducting Empirical Studies in Industry (CESI) and 6th In-
ternational Workshop on Software Engineering Research and Industrial
Practice (SER&IP) . 2019, 34–40.

0. Gasiba T, Lechner U, Pinto-Albuquerque M. ”CyberSecurity Chal-
lenges for Software Developer Awareness Training in Industrial Environ-
ments”. In: Innovation Through Information Systems . 2021, 370–87.

1. Gorski PL, Acar Y, Lo Iacono L,. et al. Listen to Developers! A Partic-
ipatory Design Study on Security Warnings for Cryptographic APIs. In:
Proceedings of the 2020 CHI Conference on Human Factors in Com-
puting Systems, CHI ’20 . New York, NY: A CM, 2020, 1–13.

2. Ford D, Zimmermann T, Bird C,. et al. Characterizing Software Engi-
neering Work with Personas Based on Knowledge Worker Actions. In:
2017 ACM/IEEE International Symposium on Empirical Software En-
gineering and Measurement (ESEM) , Toronto, ON, Canada, 2017, 394–
403.

3. Glaser BG, Strauss AL. The discovery of grounded theory: strategies for
qualitativ e researc h . Aldine, 1967.

4. Forward A, Lethbridge TC. A Taxonomy of Software Types to Facili-
tate Search and Evidence-based Software Engineering. In: Proceedings of
the 2008 Conference of the Center for Advanced Studies on Collabora-
tiv e Researc h: Meeting of Minds, CASCON ’08 . New York, NY: ACM,
2008, 179–91.

5. Strauss AL, Corbin JM. Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory. Sage Publications, Inc.,
1998.

6. Organisation for Economic Co-operation and Development (OECD).
Recognition of Non-formal and Informal Learning - Home.
http://www.oecd.org/edu/skills- beyond- school/recognitionofnon- forma
landinformallearning-home.htm . (January 2018, date last accessed).

7. Dib CZ. Formal, non-formal and informal education: con-
cepts/applicability. AIP Conf Proc 1988; 173 :300–15. https:
// doi.org/ 10.1063/ 1.37526

8. Eraut M. Non-formal learning and tacit knowledge in professional work.
Brit J Educ Psychol 2000; 70 :113–36. https:// doi.org/ 10.1348/ 00070990
0158001

9. Eshach H. Bridging In-school and Out-of-school Learning: Formal, Non-
Formal, and Informal Education. J Sci Educ Technol 2007; 16 :171–90.
https:// doi.org/ 10.1007/ s10956- 006- 9027- 1

0. Stahl G. Conceptualizing the Intersubjective Group. Int J Comput Supp
Collab Learn . 2015; 10 :209–17. https:// doi.org/ 10.1007/ s11412- 015- 9
220-4

1. NIST. National Vulnerability Database. https://nvd.nist.gov . (March
2017, date last accessed).

2. CVE - Common Vulnerability Exposures. https://cve.mitre.org . (January
2018, date last accessed).

3. Rhee HS, Ryu YU, Kim CT. Unrealistic optimism on information se-
curity management. Comput Secur 2012; 31 :221–32. https:// doi.org/ 10
.1016/j.cose.2011.12.001

4. OWASP. Cross Site Scripting (XSS). https:// owasp.org/ www-communit
y/ attacks/ xss/ . (July 2024, date last accessed).

5. Howard M, Lipner S. The security development lifecycle: SDL, a process
for developing demonstrably more secure software , Redmond, Wash:
Microsoft Press, 2006.

6. Sophy J. 43 Percent of Cyber Attacks Target Small Business. 2016.
https:// smallbiztrends.com/2016/ 04/cyber- attacks- target- small- busine
ss.html . (February 2017, date last accessed).

7. Nafees T, Coull N, Ferguson I,. et al. Vulnerability Anti-Patterns: A
Timeless Way to Capture Poor Software Practices (Vulnerabilities). In:

https://doi.org/10.1145/3589951
https://doi.org/10.1080/01972243.2019.1583296
https://doi.org/10.1109/JPROC.2018.2866769
https://stackoverflow.com
https://doi.org/10.1016/j.ijhcs.2006.08.003
http://www.oecd.org/edu/skills-beyond-school/recognitionofnon-formalandinformallearning-home.htm
https://doi.org/10.1063/1.37526
https://doi.org/10.1348/000709900158001
https://doi.org/10.1007/s10956-006-9027-1
https://doi.org/10.1007/s11412-015-9220-4
https://nvd.nist.gov
https://cve.mitre.org
https://doi.org/10.1016/j.cose.2011.12.001
https://owasp.org/www-community/attacks/xss/
https://smallbiztrends.com/2016/04/cyber-attacks-target-small-business.html

22 Assal et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf005/8071721 by H

ala Assal on 29 M
arch 2025
Pattern Languages of Programs Conference . USA: The Hillside Group,
2017.

88. Nafees T, Coull N, Ferguson RI,. et al. Idea-Caution Before Exploita-
tion: The Use of Cybersecurity Domain Knowledge to Educate Soft-
ware Engineers Against Software Vulnerabilities. In: Bodden E, Payer
M, Athanasopoulos E, (eds.). Engineering Secure Software and Systems .
Cham: Springer International Publishing, 2017, 133–42.

89. Fischer F, Böttinger K, Xiao H,. et al. Stack Overflow Considered Harm-
ful? The Impact of Copy Paste on Android Application Security. In: 2017
IEEE Symposium on Security and Privacy (SP) , San Jose, C A, US A, 2017,
121–36.

90. van Zadelhoff M. Cybersecurity Has a Serious Talent Shortage. Here’s
How to Fix It. https:// hbr.org/ 2017/05/ cybersecurity- has- a- serious- tale
nt- shortage- heres- how- to- fix- it . (January 2018, date last accessed).

91. O WASP. O WASP CTF Project. https:// www.owasp.org/ index.php/ Cate
gory:OWASP _ CTF _ Project . (January 2018, date last accessed].

92. Harmon TD. Cyber Security Capture The Flag (CTF): What
Is It?. https:// blogs.cisco.com/ perspectives/cyber- security- capture- the-
flag- ctf- what- is- it . (January 2018, date last accessed).

93. CTFtime. CTF? WTF? https:// ctftime.org/ ctf-wtf/ . (January 2018, date
last accessed).

94. Gagné M, Deci EL. Self-determination theory and work motivation. J
Organ Behav 2005; 26 :331–62. https:// doi.org/ 10.1002/ job.322

95. Bear GG, Slaughter JC, Mantz LS,. et al. Rewards, praise, and puni-
tive consequences: Relations with intrinsic and extrinsic motivation.
T each T each Educ 2017; 65 :10–20. https:// doi.org/ 10.1016/ j.tate.2017.
03.001

96. Selart M, Nordström T, Kuvaas B,. et al. Effects of Reward on
Self-regulation, Intrinsic Motivation and Creativity. Scand J Educ Res
2008; 52 :439–58. https:// doi.org/ 10.1080/ 00313830802346314

97. Shani I, Staff GitHub. Survey reveals AI’s impact on the devel-
oper experience. 2023. https:// github.blog/ 2023- 06- 13- survey- reveal
s- ais- impact- on- the- developer- experience/. (August 2024, date last
accessed).

98. Overflow S. 2024 Developer Survey. https://survey.stackoverflow.co/202
4 . (August 2024, date last accessed).
© The Author(s) 2025. Published by Oxford University Press. This is an Open Access article
License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercia
properly cited. For commercial re-use, please contact journals.permissions@oup.com
99. Tubino L, Adachi C. Developing feedback literacy capabilities through
an ai automated feedback tool. Ascilite Publ 2022; e22039. https://doi.
org/10.14742/apubs.2022.39

100. Schulte-Althoff M. What’s to Automate? A Task Analysis of AI-enabled
Start-ups. Proc 56th Hawaii Int Conf System Sci 2023.

101. Perry N, Srivastava M, Kumar D,. et al. Do Users Write More Inse-
cure Code with AI Assistants?In: Proceedings of the 2023 A CM SIGSA C

Conference on Computer and Communications Security, CCS ’23 . New

York, NY: ACM, 2023, 2785–99.
102. Raphael Khoury and Anderson R. Avila and Jacob Brunelle and Baba

Mamadou Camara. How Secure is Code Generated by ChatGPT? 2023.
https:// arxiv.org/ pdf/ 2304.09655 .

103. Pearce H, Ahmad B, Tan B,. et al. Asleep at the Keyboard? Assessing
the Security of GitHub Copilot’s Code Contributions. In: 2022 IEEE
Symposium on Security and Privacy (SP) , 2022, San Francisco, CA, USA,
754–68.

104. Negri-Ribalta C, Geraud-Stewart R, Sergeeva A,. et al. A systematic
literature review on the impact of AI models on the security of code
generation. Front Big Data 2024; 7 .

105. OW ASP. LLM T op 10 for LLMs v1.1. 2024. https:// genai.owasp.org/ re
source/llm- top- 10- for- llms- v1- 1/.

106. Klemmer JH, Horstmann SA, Patnaik N,. et al. Using AI Assistants in
Software Development: A Qualitative Study on Security Practices and
ConcernsIn: Proceedings of the 2024 on A CM SIGSA C Conference on
Computer and Communications Security , Salt Lake City, UT, USA, 2024.

107. Mastropaolo A, Pascarella L, Guglielmi E,. et al. On the Robustness of
Code Generation Techniques: An Empirical Study on GitHub Copilot.
In: Proceedings of the 45th International Conference on Software Engi-
neering, ICSE ’23 , Melbourne, Victoria, Australia: IEEE, 2023, 2149–60.

108. Vizard M. Survey Surfaces Widespread Reliance on Generative
AI Among Developers. 2024. https://devops.com/survey-surfaces
- widespread- reliance- on- generative- ai- among- developers/. (Au-
gust 2024, date last accessed).

109. Silva CAGd, Felipe NR, Rafael VdM,. et al. ChatGPT: Challenges and
Benefits in Software Programming for Higher Education. Sustainability
2024; 16 :1–23.
 distributed under the terms of the Creative Commons Attribution-NonCommercial
l re-use, distribution, and reproduction in any medium, provided the original work is

https://hbr.org/2017/05/cybersecurity-has-a-serious-talent-shortage-heres-how-to-fix-it
https://www.owasp.org/index.php/Category:OWASP_CTF_Project
https://blogs.cisco.com/perspectives/cyber-security-capture-the-flag-ctf-what-is-it
https://ctftime.org/ctf-wtf/
https://doi.org/10.1002/job.322
https://doi.org/10.1016/j.tate.2017.03.001
https://doi.org/10.1080/00313830802346314
https://github.blog/2023-06-13-survey-reveals-ais-impact-on-the-developer-experience/
https://survey.stackoverflow.co/2024
https://doi.org/10.14742/apubs.2022.39
https://arxiv.org/pdf/2304.09655
https://genai.owasp.org/resource/llm-top-10-for-llms-v1-1/
https://devops.com/survey-surfaces-widespread-reliance-on-generative-ai-among-developers/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:journals.permissions@oup.com

	Introduction
	Related work and background
	Study design and methodology
	Knowledge acquisition taxonomy
	Motivation for software security
	Internalizing software security
	Limitations and future work
	Discussion and conclusion
	Author contributions
	Funding
	Appendix A: Interview script
	Appendix B: Distribution of participants’ security learning opportunities
	Appendix C: Motivations and amotivations for software security
	REFERENCES

